Homework due on Tuesday, April 15

Problem 1. Let G be a subgroup of S_n (which we think of as permutations of $\{1, 2, ..., n\}$) such that G contains a transposition, an (n-1)-cycle and it acts transitively on $\{1, 2, ..., n\}$ (which means that for any i, j there is an element $\pi \in G$ such that $\pi(i) = j$). Prove that $G = S_n$.

Problem 2. Let $K \subseteq F$ be fields. Suppose that L, M are subfields of F containing K such that L/K is finite and Galois.

a) Prove that LM/M is finite and Galois.

b) Show that every automorphism of LM/M restricts to an automorphism of L/Kand this restriction defines an injective homomorphism $\phi : Gal(LM/M) \longrightarrow Gal(L/K)$.

c) Show that the fixed field of the image of ϕ is the field $M \cap L$. Conclude that the image of ϕ coincides with $Gal(L/M \cap L)$.

d) Use c) to show that $[LM : M] = [L : L \cap M]$.

e) Prove that if [M:K] is finite then

$$[LM:K][L \cap M:K] = [L:K][M:K].$$

Problem 3. Let G be a group. Define the **derived** subgroup [G, G] of G (often called the **commutator** subgroup) as the subgroup generated by all elements of the form $a^{-1}b^{-1}ab$, where $a, b \in G$ (such elements are called **commutators**).

a) Prove that [G,G] is a characteristic subgroup of G, i.e. if $f : G \longrightarrow G$ is an automorphism of G then f([G,G]) = [G,G]. Conclude that [G,G] is normal in G (a characteristic subgroup must be normal).

b) Let N be a normal subgroup of G. Prove that G/N is abelian iff $[G,G] \subseteq N$.

c) Prove that if G is solvable then $[G,G] \neq G$ (groups for which G = [G,G] are called **perfect**).

d) Define the **derived series** of G inductively as follows: $G_0 = G$, $G_{n+1} = [G_n, G_n]$. Prove that each G_n is a characteristic subgroup of G.

e) Prove that G is solvable iff $G_n = 1$ for some n.

f) Suppose that G is solvable and $G = H_0 \supseteq H_1 \supseteq ... \supseteq H_m = 1$ is a chain of subgroups such that H_{i+1} is normal in H_i and H_i/H_{i+1} is abelian for all *i*. Show that $G_i \subseteq H_i$ for all *i*. Conclude that the derived series in a solvable group is a shortest chain of subgroups with abelian succesive quotients which terminates at the trivial group. The first *n* such that $G_n = 1$ is called the **solvability class** of *G*.