The theory of a single linear transformation.

1 Invariant subspaces.

Many problems in mathematics and applied mathematics naturally lead to
a consideration of a finite dimensional vector space V' and a linear transfor-
mation 7' : V — V. It is then of considerable importance to understand
such T' as well as possible. For example, we would like to know a behavior
of a given vector v under iterations of 7', i.e. we would like to understand
the sequence v, T'(v), T(T(v)) = T?*(v), T(T?(v)) = T3(v), .... We would like
to know for which v this sequence is bounded, tends to 0 or tends to infinity,
what is the rate of growth of this sequence, etc..

As an illustration, let us consider the following simple example. Suppose
that we have a particle which can be at two different states 1 and 2. Every
second the particle in state ¢ can change to the other state 57 with probability
pi,; or it can stay at the state ¢ with probability p;; = 1 —p; ;. We would like
to know the probability that a particle originally in state 7 is in state j after
n seconds. It is a nice exercise to see that the answer is given in terms of the
2 x 2 matrix P = (p; ;). Namely the desired probability is simply the (3, j)
entry of the matrix P". We will show how linear algebra can be employed to
get a good understanding of powers of P.

To make things more concrete, suppose that p; ; = 1/3 and pa2 = 1/2 so

that the matrix P is (i;;’ ?;g) We consider P as the matrix representation

of a linear transformation T from R? to itself in the standard basis e =
{e1,e2}. Thus T(z,y) = ((z +2y)/3, (z +y)/2). Consider now another basis
v = {vy,vp} for R% where v; = (1,1) and vy = (—4,3). It is easy to see
that T'(v1) = v1 and T'(ve) = (—1/6)vy. Thus the matrix representation B
of T in the basis v is ((1) _?/6). Let C be the transition matrix from the
basis e to the basis v. Then A = C'BC. The matrix C! is easy to
find: it is the transition matrix from v to e so it equals (] ;). Now C

is the inverse of C~!, so it equals (31//77 411%) The final observation is that

A" = (C71BC)" = C1B"C. But it is very easy to compute B", namely B"
equals (o (_1)g ). This leads to a formula for A™:

AP — (3/THA/T(=1/6)" 4/7-4/7(~1/6)"
- (3/7—3/7(—1/6)" 4)7+43/7(—1/6)" )

Note that for n very large the probability that the particle ends up in state



1 practically does not depend on where it started and is about 3/7. The
probability that the particle ends up in state 2 is about 4/7.

Exercise. Solve the above problem in general.

Hint. The cases when both p;; and p, 2 are 0 or both are 1 requires separate
treatment, but is easy. All other cases are handled by the same method
as in our example. Consider the basis v = wvy,vs where v; = (1,1) and

U2 = (—p1,2,P2,1)-

It is clear that the heart of the method used in the above example is the exis-
tence of a basis in which the transformation 7" has particularly simple matrix
representation. It is our goal in this chapter to investigate the possibility of
finding such convenient basis for arbitrary operators. Thus we need to find
out what a convenient basis should be and how to find such a basis.

In order to achieve our goal we start with a short discussion of the notion
of direct sum of vector spaces. Recall that given two vector spaces U, W we
can construct a new vector space, V = U @& W, called the direct sum of U
and W, which consists of all pairs (u,w) of vectors v € U and w € W. So
the direct sum is a way of building a large vector space from smaller. But in
practice we would like to proceed in the opposite direction: we have a vector
space which we would like to investigate and one way to do so is to try to
decompose it into a direct sum of smaller subspaces.

It is easy to see that if V is a vector space and U is its subspace then
there is always a subspace W such that U @ W =V (but it is by no means
unique). In fact, it is enough to choose a basis for U and complete it to a
basis of V' by adding w,,ws,.... The span W of the vectors wy, ... has the
required property.

So we see that it is not a big deal to decompose a vector space into a
direct sum of smaller vector spaces. But recall that our goal is not the vector
space itself, but the vector space together with a linear transformation on it.
Note first that given linear transformation 7y : U — U and Ty : W — W
we can define a linear transformation T : U & W — U & W by T(u,w) =
(Ty(u), Tw(w)). So again, our idea is to proceed in the opposite direction:
given a vector space V' and a liner transformation 7" on it, can we decompose
V into a direct sum V = U & W such that 7" maps U into U and W into
W? Note that if this is possible, then the study of T reduces to a study
of the restrictions Ty of T' to U and Tw of T' to W. In particular, if we
choose a basis u of U and a basis w of W then the sequence v consisting of



vectors in u followed by the vectors in w is an ordered basis of V' and in this
basis the matrix representation of T' looks like (6‘ 9 ), where A is the matrix
representation of Ty in the basis u, and B is the matrix representation of
Tw in the basis w.

In order to answer our question it seems natural to investigate first subspaces
U of V which are preserved by T, i.e. such that 7" maps U into U, and then
try to decide which of them can be completed by another such subspace W
to a direct sum decomposition of V. This leads to the following

Definition 1. Let V be a vector space and T € L(V,V) a linear transfor-
mation. A subspace U of V is called T—invariant (or just invariant, if it is
clear what transformation it refers to), if T(U) C U, i.e. if T maps U into
itself.

From now on we assume that our vector spaces are finite dimensional.
Suppose that U is a T'—invariant subspace of V.. If v € U, then also T'(v) € U,
so also T(T'(v)) € U and T(T(T(v))) € U, .... In what follows we will often
consider compositions of 7" with itself (called iterations of T'). We will write
T™ for the composition of T" with itself n—times. Note that the operation
T — T™ has all formal properties of raising to n—th power, and if we recall
that L(V, V') with addition and composition is a ring, then it should become
clear that this is exactly the operation of raising to n—th power in the ring
L(V,V). For convenience we define 7° to be the identity operator.

Thus, U contains the vectors v = T°(v), T'(v), T*(v), T3(v), ..., so it con-
tains the subspaces spanned by this vectors. We denote this subspace by
< v > and we call it the cyclic subspace generated by v. It is easy to
see that < v > itself is a T'—invariant subspace, i.e. we have

Lemma 1. Let T € L(V,V) be a linear transformation and v € V. The
cyclic subspace < v > generated by v is T'—invariant and it is the smallest
T—1invariant subspace which contains the vector v.

Proof: The proof is nearly obvious. Any element v of < v > looks like
u = agv + a;T(v) + aaT?(v) + ... + axT*(v) for some k and some scalars a;.
Now T'(u) = agT(v) + a1y T?(v) + ... + aT* 1 (v) so T(u) clearly belongs to
< v >. Thus < v > is T'—invariant. Since we have seen that any 7'—invariant
subspace which contains v contains also < v >, we see that < v > is the
smallest T'—invariant subspace containing v. O



The next step is to get some idea about the dimension of < v >. Since the
case when v = 0 is trivial, we assume from now on that v # 0. Since < v > is
finite dimensional, the vectors v, T(v),T?(v), ... can not be linearly indepen-
dent. Let k be largest such that v, T'(v), ..., 7% !(v) are linearly independent.
Thus there are scalars by, ..., by such that byT°(v) + ... + bT*(v) = 0. Note
that b, # 0, otherwise the vectors v, T'(v), ..., 7% !(v) would be dependent.
Thus, setting a; = —b; /b, we see that

TF() = agT°(v) + ... + ax1 T H(v) (%)

We claim that v, T'(v), ..., 7% !(v) is a basis of < v >. Since these vectors are
linearly independent, we just need to show that they span < v >. Let U be
the subspace of < v > spanned by v, T(v), ..., T*~1(v). Tt is enough to show
that T"(v) € U for all n, since < v > is spanned by such vectors. Suppose
that n is smallest such that T"(v) ¢ U. Clearly n > k, so we may apply
T™* to both sides of (x) to get

T"(v) = aeT™ " (v) + ... + a1 T (v).

But the right hand side is clearly contained in U by minimality of n, which
contradicts our assumption that 7"(v) is not in U. This shows that all the
vectors T™(v) are in U so U =< v >. Thus we showed the following:

Theorem 1. Let T € L(V,V) and let v € V. There exists largest integer
k such that the vectors v,T(v),...,T*"1(v) are linearly independent. Then
k = dim(< v >) and the vectors v, T(v),...,T*"1(v) form a basis of < v >.
Moreover, there exist unique scalars ay, ..., a1 such that

T*() = agT°(v) + ... +ap 1 T* 1 (v) (%)

Before we proceed note that, given 7" and v, it is not hard to compute &
and the scalars ag, ..., ax_1. In fact, if V' has dimension n then clearly £ < n
so that k is the dimension of the subspace spanned by v, T (v),...,T™ *(v).
Knowing k, the problem of finding the scalars a; translates into a system of n
linear equations with £ unknowns, and we know how to solve such systems.

Algorithm In order to describe an explicit algorithm, we choose a basis
of V and represent each vector T%(v), i = 0,1,...,n, as an n—tuple of its
coordinates in this basis. Let A be the matrix whose i—th column is the
vector of coordinates of T%(v). Using elementary row operations transform
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this matrix into a reduced row-echelon form B. It is now easy to read the
rank k£ of B, which is the dimension of < v >. The scalars ay, ..., ax_1 form
k + 1st column of B.

Example. Let V = P5(R) be the space of polynomials of degree < 3 and let
T be given by T'(f) = zf'. We want to find the dimension of < v > and the
a;’s for v =1+ z + 2% + 23. We perform computations in the standard basis
1,z,2% 2% First note that T'(v) = z + 22?2 + 323, T?(v) = = + 42? + 923,
T3(v) = = + 822 + 27z% and T4(x) = = + 1622 + 81z%. Thus the matrix A
equals

100 0 O
111 1 1
1 2 4 8 16
1 3 9 27 81

The reduced row-echelon form B of A is the matrix

1000 O
0100 6
0010 -11
0001 6

We see that the rank k£ of B is 4. From the fifth column of B we get that
(10:0, (11:6, (12:—11,0,3:6.

Let us return to our investigation. The equality T%(v) = agT°(v) + ... +
ar_1T* 1(v) can be interpreted as follows: v is in the kernel of the linear
transformation T% — a,_ 7% ! — ... — ;T — aoT°. This operator looks like a
”polynomial in T”. Since such operators will be crucial in our investigation,
we have to find a convenient way of handling them, and it turns out that
it may be achieved by making our analogy with polynomials more precise.
First we recall basic facts about polynomials over fields, which will provide
us with necessary tools to make further progress in an efficient and clear way.

2 Review of polynomials

Let us recall some basic properties of polynomials. We denote the set of
polynomials with coefficients in a field F' by F[z]. This set is equipped
with addition and multiplication. Recall that in order to multiply p(z) =



ao+ a1z + ... + @™ by q(x) = by + by + ... + byx™ we multiply each term of
p by each term of ¢ and combine all resulting terms with the same power of
z. Explicitly, the polynomial p(z)g(x) equals co+ c12 + ... + Crminz™ ™ where

C;, = aobi + albi_l + ...+ aibo

(in this formula we set a; = 0 for j > m and b; = 0 for j > n). It is well
known and easy that the addition and multiplication of polynomials satisfy
all basic properties required of addition and multiplication in a commutative
ring: both are associative, commutative and have neutral elements (i.e. 0 for
addition and 1 for multiplication), every polynomial p has an additive inverse
(namely —p), and addition is distributive with respect to multiplication.

To each polynomial p we associate its degree defined as the largest integer
n such that z" occurs in p with a non-zero coefficient. The degree of p is
usually denoted by deg(p). The reader should note that our definition of
degree does not apply to the zero polynomial (all powers of z have coefficient
0). It is customary to define the degree of 0 to be —oo. With this convention
we see that for any two polynomials p,q the formula deg(pq) = deg(p) +
deg(q) holds, provided we agree that —oo 4+ a = —oo for any a (without this
convention we would always have to distinguish cases when some polynomials
are 0, which is very inconvenient).

We define the leading coefficient of p as the coefficient at the highest
power of z which occurs in p with non-zero coefficient if p # 0 and the leading
coeflicient of 0 is defined to be 0 . It is easy to see that the leading coefficient
of the product of two polynomials is the product of leading coefficients.

Definition 2. We say that a polynomial p is monic, if its leading coefficient
equals 1.

Since we can multiply polynomials, it makes sense to speak about divisi-
bility of polynomials. More precisely, we have the following

Definition 3. We say that a non-zero polynomial p divides a polynomial q
and write p|q if there is a polynomial h such that ¢ = ph.

The divisibility theory of polynomials is very interesting and is quite
similar to the divisibility theory of integers. The analog of a prime number
is the notion of an irreducible polynomial, defined as follows:

Definition 4. A polynomial p is called irreducible if it is not constant and
it can not be expressed as a product of two polynomials of positive degrees
(or, equivalently, of degrees smaller than deg(p)).
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For example, x + 1 is irreducible over any field. The polynomial z% + 1
is irreducible in R[z], but it becomes reducible in C[z], since 2?> + 1 = (x +

It is a trivial consequence of Definition 4 that p is irreducible iff for any
q such that ¢|p we have that either ¢ is constant or it is a constant multiple
of p. In particular, if p, g are both monic then either ¢ = 1 or ¢ = p.

It is easy to see that every non-constant polynomial g can be written as a
product of irreducible polynomials. In fact, this follows from the simple fact
that any non-constant divisor of g of lowest possible degree is irreducible (if
not, we would get divisors of lower degree), so we can successively extract
irreducible factors and after a finite number of steps we get factorization of
g into irreducible factors. In such factorization we can always assume that
all irreducible polynomials are monic by simply extracting the leading coef-
ficient first. It can be proved that such decomposition into monic irreducible
polynomials (and a constant) is unique up to order of factors. It should be
mentioned that even though we know that each polynomial can be written
as a product of irreducible elements, there is in general no algorithm which
would allow to find such decomposition. Such algorithms exist if the field
of coefficients is finite or is the field of rational numbers. But for two very
important fields, namely R and C, no such algorithm exists.

Now we describe the main fact about polynomials which will be used in
our investigation and which also implies rather easily all the basic proper-
ties of divisibility theory of polynomials, for example the above mentioned
uniqueness of decomposition into irreducible factors.

First we introduce the following

Definition 5. A non-empty subset of F[z] is called ideal, provided it has
the following properties:

— forany f,g in I also f+g € I, i.e. I is closed under addition;

— for any f in I and any polynomial p also pf € I, i.e. I is closed under
multiplication by any polynomial from F|[z].

If I contains non-zero elements then by d(I) we denote the smallest pos-
sible degree of a non-zero polynomial in I.

The main example of ideals is given by the following

Example. Fix a non-zero polynomial p. The set I of all polynomials divisible
by p is an ideal. In fact, it is obvious that if p|f and p|g then p|(f + g) and



p|fh for any polynomial h. We denote this ideal by (p). It is clear that
d((p)) = deg(p)-

The main result about polynomials says that every ideal is of the form
described in the Example. More precisely, we have the following

Theorem 2. Let I be an ideal and assume that I contains non-zero polyno-
mials. Then there is unique monic polynomial p in I of degree d(I) and I
consists exactly of all multiples of p, i.e. I = (p).

Proof: By definition, there is a polynomial in I of degree d = d(I). By
dividing it by its leading coefficient we can assume that it is monic. Call
it p. If p; is another monic polynomial of degree d in I then the difference
p — p1 is in I and has degree smaller than d. By the definition of d = d([)
we see that p — p;y = 0, i.e. p = p;. This shows the uniqueness of p. To see
that I = (p) note that the inclusion (p) C I is clear since p € I and I is
closed under multiplication by arbitrary polynomials. Suppose that there are
polynomials in I which do not belong to (p) (i.e are not divisible by p), and
let f be such polynomial of lowest possible degree. Set n = deg(f) son > d
and f(z) = c,z" + ... + ¢o. Now the polynomial h(z) = f(z) — a,z" ()
is clearly in I and it has degree smaller than n (the terms of degree n cancel
out). Thus h(z) € (p) by the definition of n. But f(z) = h(z) + a,z™ p(x)
and both h(zx), a,z" %p(x) are in (p), so also f is in (p), which contradicts
our assumption that f & (p). The contradiction shows that no such f exists,
ie. that I =(p). O

The last theorem gives us a very powerful tool, but we need to learn how
to use it. As a first illustration let us prove the following fundamental result

Theorem 3. Let p ba an irreducible polynomial and suppose that p|fg. Then
either p|f or plg.

Proof: Let I = {h : p|fh} be the set of all polynomials h such that
p divides fh. Clearly both p and g belong to I, so I contains non-zero
polynomials. It is clear that I is an ideal (verify it). Thus there is a monic
polynomial ¢ in I such that I = (q). In particular, q|g and ¢|p. Since p is
irreducible and both p, ¢ are monic, we see that either ¢ = 1 or ¢ = p. In the
former case we have p|f -1 = f and in the latter case ¢ = p|g. O

Let us note the following useful fact

Lemma 2. Let f be a non-zero polynomial and p an irreducible polynomial.
Then there are unique integer n > 0 and polynomial g not divisible by p such
that f = p"g.



Proof: If p does not divide f then we have no choice: we need to take
n =0 and g = f. Suppose that p divides f and let n be the largest integer
such that p" divides f. Thus f = p"g for some polynomial g which then can
not be divisible by p. This proves the existence of g and n. To see uniqueness
let f = p™g; for some m and polynomial g; not divisible by p. Clearly m <n
and we have p™(g; —p™ ™g) =0, so g; = p™ ™g. Since g, is not divisible by
p, we have m =nand gy =¢g. O

3 Back to linear transformations

Let us return to the main theme of this section. We want to make more
precise our observation that 7% — a;,_17%! — ... — ay looks like a polynomial
inT.

Let T € L(V,V) be a linear operator. For any polynomial p = by + byx +
...bpx™ € F[z] we define the operator p(T') by p(T) = bgl + 01T + ...+ b, T™,
i.e. we substitute 7" for z in p. It is clear that for any 2 polynomials p,q
we have (p + q)(T) = p(T) + q(T). Almost as obvious is the fact that
(pg)(T) = p(T)q(T). Let us justify the last property. We have pg = byq +
bizq+ ...+ bpx™q, so (pg)(T) = (boq)(T) + (b12q)(T) + ... + (bmz™q)(T') and
also p(T)q(T) = bog(T)+b6:Tq(T)+...4+b,T™q(T). Thus, it is enough to show
that for every j we have (b;z?q)(T) = b;T7q(T). Now write ¢(z) = co+c1z+
.t ¢z, Then (b;z7q)(T) = bjcoT? +bjci TP + ...+ b T+ and b;T7¢(T) =
b;T9(coT° + 1T + ... + aT") = bjcoT? + bje; TP + ... + bje/ T, Thus our
property is established. Since multiplication of polynomials is commutative,
we conclude that for any polynomials p,q the linear transformations p(7')
and ¢(T') commute, i.e. p(T)q(T) = q(T)p(T).

Similarly, if A is an n X n matrix then we define the matrix p(A) by
p(A) =bol + 1A+ ... + b, A™. It is clear that the above discussion applies
also to this situation. Moreover, if v is an ordered basis of V' and A is the
matrix representation of 7' in the basis v, then the matrix representation of
p(T) in the same basis equals p(A).

Now we can characterize the scalars ag, ..., ax_1 in Theorem 1 in terms of
polynomials. First we introduce the following

Definition 6. Let T' € L(V,V) and v € V. The annihilator of the vector
v with respect to T is the polynomial p,(z) = ¥ — ap_12* 1 — ... — ag, where
ag, ..., ag_1 are defined in Theorem 1.



We have seen that p,(T")(v) = 0 (i.e. p,(T) annihilates v). We will see in
a moment that any other polynomial ¢ such that ¢(7")(v) = 0 is divisible by
py- This follows from the following more general fact:

Proposition 1. Let U be a proper T—invariant subspace of V' (proper means
that U # V) and let v ¢ U. The set I of all polynomials f such that
f(T)(v) € U is an ideal. In particular, there exists unique monic polynomial
p with the property that for any polynomial f, we have f(T)(v) € U iff p|f.

Proof: The fact that I is an ideal is clear: if f,g € I then (f+¢)(T)(v) =
f(T)(v) 4+ g(T)(v) € U (since both f(T)(v) and g(T)(v) are in U and U is a
subspace) and for any polynomial h we have (hf)(T)(v) = (W(T)f(T))(v) =
h(T)(f(T)(v)) € U, since f(T)(v) € U and U is h(T')-invariant. By Theorem
2, the ideal I consists of all polynomials divisible by a uniquely determined
monic polynomial p, which implies the last statement of the proposition. O

Corollary 1. The annihilator p,(z) = z*¥ — ap_12* 1 — ... — ag of v is the

unique monic polynomial with the following property: for any polynomial q
we have q(T)(v) = 0 iff q is divisible by p,.

Proof: We apply the last proposition to v and U = 0. Thus there is
unique monic polynomial p such that f(7)(v) = 0 iff p|f. In particular p|p,.
It remains to show that p = p,. Since p|p, and both polynomials are monic,
it is enough to show that deg(p) = deg(p,). It is clear that deg(p) < deg(p,).
On the other hand, if p = 2° — b,_12° ! — ... — by then T°(v) = byv +b,;T (v) +
e+ b1 T (v). Tt follows that the vectors v, T'(v),...,T° }(v) are linearly
dependent, so s = deg(p) > k = deg(p,). O

Exercise. Let U be a T'—invariant subspace of V' and let S be a subset of
V. Show that the set I of all polynomials f such that f(7T")(v) € U for every
veS(ie. I={f:f(T)(v) €U forallve S}) is an ideal. Show that this
ideal contains non-zero polynomials. Consider the case when U = {0} and
S =V and conclude that there exists a monic polynomial g7 such that for
any polynomial f, we have f(T) = 0 iff ¢r|f. The polynomial ¢r is called
the minimal polynomial of 7. We will discuss it later in more details.

Recall that our goal is to decompose V' into a direct sum of several
T'—invariant subspaces which can not be decomposed any further. We will
search for such subspaces among the cyclic subspaces of V' (as we have seen,
every invariant subspace contains a cyclic subspace generated by any of its
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vectors). It is then a natural question to ask when a cyclic subspace < v >
can not be decomposed into a direct sum of its proper T'—invariant subspaces.
The answer is given by the following

Proposition 2. A cyclic subspace < v > cannot be decomposed into a direct
sum of its proper T —invariant subspaces iff p, is a power of an irreducible
monic polynomial.

A proof of this result is not difficult and is left as an exercise. We state
it here only as a reason why we focus our attention on vectors whose annihi-
lators are powers of irreducible polynomials. The following observation may
be helpful in proving Proposition 2 and it will be helpful later on.

Lemma 3. Suppose that f|p, and let w = f(T)(v). Then p, = p,/f.

Proof: Let h = p,/f. It is clear that h is monic. Note that h(T)(w) =
h(T)(f(T)(v)) = (hf)(T)(v) = po(T)(v) = 0, S0 py|h. On the other hand,

0 = pu(T)(w) = pu(T)(F(T)(v)) = (Puf)(T)(v) 50 pu|puf, so h = %?hhw

Thus h|p, and p,|h and since both h and p,, are monic, we conclude that
h=p, 0O

Exercise. Let T : V — V be a linear transformation and let v € V be a
non-zero vector.

a) Show that a vector w belongs to < v > iff there is a polynomial f such
that f(7T)(v) = w.

b) Prove that any T—invariant subspace of a cyclic subspace is cyclic.
Hint. Let U be a T-invariant subspace of < v >. Consider the unique
monic polynomial ¢ with the property that for any polynomial f, we have
f(T)(v) € U iff q|f (which exists by Proposition 1). Show that U =< w >,
where w = ¢(T)(v). Show also that g|p,.

c) Prove that if p, is a power of an irreducible polynomial and U, W are
T-invariant subspaces of < v > then either U C W or W C U. Conclude
that < v > cannot be decomposed into a direct sum of proper T-invariant
subspaces.

d) Prove Proposition 2.
Hint. If p, is not a power of an irreducible polynomial, then there are an
irreducible polynomial ¢, a positive integer [ and a polynomial f not divisible
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by ¢ such that p, = ¢'f (see Lemma 2). Set u = ¢'(T')(v) and w = f(T)(v)
and show that < v >=<u> & <w >.

e) Show that < w >=< v > iff w = f(T')(v) for some polynomial f relatively
prime to p,.

f) Let f be a polynomial. Describe p,, for w = f(T)(v).
Hint. Show that p, = p,/h, where h is the greatest common divisor of p,
and f.

Since every polynomial has irreducible divisors, it follows from Lemma
3 that every T'—invariant subspace contains vectors whose annihilators are
irreducible. Let p be an irreducible monic polynomial which is the annihilator
of some vector in V' (we just observed that such polynomial exists). Let ¢
be the largest integer such that p’ is the annihilator of some vector in V/
(such t exists, since the annihilator of any vector has degree bounded by the
dimension n of V), and let v be such that p* = p,. Set k for the dimension
of <v>,s0k=t-deg(p).

Under these assumptions we have the following key result:

Proposition 3. Let v € V be a non-zero vector such that its annihilator
py = Pt is a power of a monic irreducible polynomial p. Suppose furthermore,
that t 1s the largest integer such that p' is the annihilator of some vector in
V. There exists a T—invariant subspace W of V such that V =< v > ®&W.

The proof of this proposition is based on the following lemma:

Lemma 4. Let U be a proper T'—invariant subspace of V. There is a vector
u not in U such that:

— pu = q" for some irreducible monic polynomial q;

— for any polynomial f, we have f(T)(u) € U iff q|f.

Proof: Let a be the smallest positive integer such that there is a vector u
in V but not in U such that p, has degree a. Let ¢ be the monic polynomial
with the property that for any polynomial f we have f(T')(u) € U iff ¢|f (it
exists by Proposition 1). Since u ¢ U, the polynomial ¢ is not constant. Let
d be an irreducible monic divisor of p, and w = d(T)(u). The annihilator
Pw = Pu/d has degree smaller than a, so w € U. Thus ¢|d, and therefore
q = d (since d is irreducible, both ¢, d are monic and ¢ is not constant). It
follows that ¢ is irreducible and it is the only irreducible divisor of p,. This
implies that p, = q" is a power of ¢. O

12



Proof of Proposition 4: Let W be a T'—invariant subspace of maximal
possible dimension such that < v > NW = 0. We will prove that V =< v >
+W. Suppose not, so that U =< v > +W is a proper T'—invariant subspace
of V. By Lemma 4, there is a vector u not in U such that p, = ¢" is a power
of an irreducible polynomial ¢ and ¢(7")(u) € U. Note that U =< v > &W,
since < v > NW = 0. Thus there are unique vectors w € W and y €< v >
such that ¢(7)(u) = y+w. We will show that u can be chosen so that y = 0.
Observe that

¢ H(T)(y +w) = ¢ (T)(e(T)(w) = ¢"(T)(u) = pu(T)(u) = 0,

ie. ¢ HT)(y) = —¢"'(T)(w). But the left hand side of the last equality is
in < v > and the right hand side belongs to W. Since WN < v >= 0, we
conclude that both sides are 0, i.e. ¢""}(T)(y) = 0 and ¢"~}(T")(w) = 0.

We will use often the following useful observation: every vector in a cyclic
space < w > is of the form h(T)(w) for some polynomial h. In fact, for
[ €< w > there exist scalars cg, ..., cx_1 such that y = cow + 1T (w) + ... +
cx 1T*1(w) so we may take h(z) = co + ... + cx_12F 1.

Since y €< v >, we may write y = h(T')(v) for some polynomial h. Thus

0=¢"1T)(y) = ¢ (T)(W(T)(v)) = (¢" ' R)(T)(y)
so the annihilator p, of v divides ¢" 1h, i.e. pt|¢g" 'h. We consider 2 cases:

Case 1. Suppose that ¢ # p. Since p and ¢ are distinct monic irreducible
polynomials and p‘|¢"~'h, we must have p'|h. But this implies that 0 =

WT)(v) = y.

Case 2. Suppose that p = ¢. Since p” = p, is the annihilator of u, we see
that » < t by our choice of t. From pf|[p"~'h and ¢ > r — 1 we deduce that
p|h, so we may write h = ph; for some polynomial hy. Let y; = hy(T)(v)
and u; = u — y;. We have y = p(T')(y1) and therefore

p(T)(w1) = p(T)(u = y1) = p(T)(v) = p(T)(31) = (y + w) —y = w.

Note that u; & U, sinceu ¢ U and y; €< v >C U. Furthermore, p"(T)(y;) =
p" Y T)(y) = 0 and p"(T)(u) = 0. Tt follows that p"(T)(u1) = 0, so py,|p"-
Since p is irreducible, p,, must be a power of p. This shows that we may
replace u by u; and then have y = 0.

Thus we showed that indeed u can be chosen so that y = 0, i.e. ¢(T)(u) =
w € W. We claim that this implies that < v > N(W+ < u >) = 0, which
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contradicts our choice of W. In fact, suppose that z e< v > N(W+ < u >).
Since £ € W+ < u >, we may write z = w’' + ¢(T")(u) for some w' € W
and some polynomial g. In particular, g(T')(u) = z —w' € U. It follows that
qlg- Thus g = ¢d for some polynomial d and ¢(7T)(u) = d(T)(q(T)(u)) =
d(T)(w) € W (since W is invariant). This implies that z = w'+g(T)(u) € W.
Recall that also z €< v >, so x €< v > NW = {0}, i.e. x = 0. This proves
that < v > N(W+ < u >) = 0, which contradicts our definition of W. O
Now we are able to state the main theorem:

Theorem 4. Let T € L(V,V). ThenV can de decomposed into a direct sum
of cyclic subspaces:

V=<v>0<vy>60.06<vy >
such that p,, s a power of an irreducible polynomial for each 1.

Proof: The proof is an immediate application of Proposition 4. This
proposition allows us to write V =< v; > ®&W,; with W; a T—invariant
subspace. Now the same argument applied to W; allows us to write W; =<
vg > @W, for some T'—invariant subspace W5 of W;. So after a finite number
of steps we get the required decomposition (another way to spell out this
proof is to use induction on the dimension of V). O

Definition 7. Any decomposition of V' of the form described in Theorem 4
15 called rational canonical decomposition of V' with respect to T'.

Now the following questions naturally come to mind:

— is there any uniqueness statement about rational canonical decompo-
sition?

— how to compute explicitly such a decomposition?

It is easy to see that a rational canonical decomposition is not unique. For
example, let V = R? and let T = I be the identity operator. Each non-zero
vector v € V has annihilator p, = £ — 1. Thus any two linearly independent
vectors v; and ve give a rational canonical decomposition V =< v; > @ <
vy >. But in a sense all these decompositions look the same. And in fact
something similar is true in general. In order to spell it out we introduce the
following definition:
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Definition 8. Consider a rational canonical decomposition
V=<v>0..0<y>.

Let the annihilator of v; be qfi, where q; is a monic irreducible polynomial.
For each irreducible polynomial p and each integer m > 0 define M(p,m)
to be the number of i such that p,, = p™, t.e. it is the number of direct
summands in the decomposition which have annihilator p™ (so for all but a
finite number of pairs (p, m) the number M(p,m) =0). For convenience, we
also define M(p,0) = 0.

Example. Suppose that | =5, p,, =z — 1, p,, = (x — 1)?, p,, = (z — 1)%,
Doy = (22 +1)2, pp, = (22 +1)%2. Then M(z — 1,1) = 1, M(z — 1,2) = 1,
M(z—-1,3)=0, M(z—1,4) =1, M(z*+ 1,1) = 0, M(z*> + 1,2) = 2 and
M (p,m) = 0 in all other cases.

We will show that the numbers M (p,m) are the same for every rational
canonical decomposition. This is the same as to say that the sequence of
annihilators py, , Dy,, ..., Py, 1S, up to order of elements, the same for any two
rational canonical decompositions. Since two cyclic spaces with the same
annihilator ”look the same” (see the next exercise for more precise mean-
ing of this claim), this justifies our claim that any two rational canonical
decompositions ”look the same”.

Exercise. Let < v >, < w > be two subspaces of V' such that p, = p,.
Prove that there is an isomorphism S :< v >——< w > such that ST =T'S.

Our proof of the independence of M (p,m) on the particular decomposition
is based on the following useful observation.

Lemma 5. Let v be a vector whose annihilator p, = ¢™ is a power of an
irreducible polynomial q. For any irreducible polynomial p and any integer
i > 0 the kernel of the linear transformation p*(T) :< v >—< v > equals

| {0} fp# ¢
kerp'(T)=¢ <v > ifp=q and i > m;
<qg" Y T)(v) > ifp=gqandi<m.

In particular, if p = q, then the dimension of the kernel of p'(T) equals
min(i,m) deg q, where min(i,m) denotes the smaller of the integers i, m.
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Proof: Let w €< v >, so there is a polynomial h such that w = h(T)(v).
Now p'(T)(w) = 0 iff (p*h)(T)(v) = 0 iff p,|p'h.

If p # ¢ then the last divisibility is equivalent to p,|h and therefore
w = h(T)(v) = 0. Thus kerp*(T') = {0} in this case.

If p=q and i > m then p,|p'h for any h so any w in < v > satisfies
p(T)(w) = 0. Thus kerp(T) =< v > in this case and its dimension equals
degp, = mdegq = min(i, m) deggq.

Finally, if p = ¢ and ¢ < m then p,|p'h iff ¢g™¢|h. Thus if p'(T)(w) = 0
then h = ¢™*hy and w = hy(T)(¢™(T)(v)) €< ¢™*(T)(v) >. Con-
versely, it is clear that any vector w in < ¢™ (T (v) > satisfies p*(T)(w) = 0
(why?). Thus kerp‘(T) =< ¢™ (T)(v) > in this case. Since the annihi-
lator of ¢™ (T)(v) equals ¢' (by Lemma 3), we see that the dimension of
< ¢ (T)(v) > equals deg¢' = idegq = min(i,m)degq. O

Exercise. For any polynomial f and any vector v describe the kernel and
range of the linear transformation f(7") on the cyclic space < v >.

Hint. Show that the range of f(7T) is < f(T)(v) > and the kernel equals
< h(T')(v) >, where h is such that p,/h is the greatest common divisor of f
and p,.

Now we can prove the following

Theorem 5. Let T : V — V be a linear transformation. For an irreducible
polynomial p and an integer i > 0 define V;(p) to be the kernel of the liner
transformation p'(T) : V. — V and set d(p,1) to be the dimension of Vi(p)
fori>0 and d(p,0) = 0. Then

degp

M(p,i) =

for alli > 0.

Proof: Let

where p,, = p} is a power of a monic irreducible polynomial p; for each i.
Any w € V can be uniquely written as w = wy + ... + w; with w; €< v; >.
We have p™(T)(w) = p™(T)(w1) + ... +p™(T)(w;). Since p™(T)(w;) €< v; >,
we see that p™(T)(w) = 0 iff p™(T)(w;) = 0 for all . This means that V,,(p)
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is the direct sum of the spaces K; = {u €< v; >: p™(T)(u) = 0}. Thus,
d(p,m) = dim V,,,(p) = Z;Zl dim K;. By Lemma 5, we have

dim ki, = 30 if p 7 pj;
! min(t;, m)degp if p = p;.

Directly from the definition of the numbers M (p, m) we see that

d(p,m) = Z M (p,i) min(i, m) deg p

=1

for every m > 0 (since M(p, 1) is the number of summands with annihilator
equal to p' and each such summand contributes to V;,(p) a direct summand
of dimension min(i, m)degp). From these formulas one can now compute
the numbers M (p,1) in terms of the numbers d(p, m) to get the expressions
claimed in the theorem. But once we know what the expressions should be,
the verification that they are indeed correct is quite simple:

2d(p,m) —d(p,m — 1) —d(p,m + 1) =

= Z M (p,i)(2min(i,m) — min(i,m — 1) — min(i,m + 1)) degp. ()

i=1
Note that
21—1—1=0 fori <m
2min(z,m)—min(i,m—1)—min(i,m+1) =< 2m—(m—-1)— (m+1) =0 fori>m
2m—(m—-1)—-m=1 for i =m.

Thus (*) simply says that

which is exactly what the theorem claims. O

The last theorem proves in particular that the numbers M (p, m) are inde-
pendent on the rational canonical decomposition. Indeed, we expressed these
numbers in terms of the dimensions d(p,¢) and these dimensions are defined
without reference to any decomposition of V.
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Theorem 5 suggests a simple algorithm to determine the numbers M (p, m)
for a given irreducible polynomial p. All we need to do is to compute the
dimension d(p,:) of the kernel of the linear transformation p(T)" for i =
1,2,...

Example. Consider a linear transformation 7' : R5 — R? given by the
matrix

1 0 2 -1 -2

-12 0 1 -2

A=]1 0 0 1 2

2 0 -1 3 2

1 2 0 1 O

Let p(z) = z — 2. Thus

-1 0 2 -1 -2
-1 0 0 1 =2
pA)=A-2I=|1 0 -2 1 2
2 0 -1 1 2
1 2 0 1 =2

has rank 4 (this follows from a row-echelon form of p(A) which has 4 pivot
columns, but we skip the computations of row echelon forms here), hence the
kernel of p(A) has dimension 5 —4 =1, i.e. d(z —2,1) = 1. Now

-1 -4 -5 0 8
1 -8 1 0 8
p(A*=]11 4 5 0 -8
1 4 5 0 -8
3 =4 1 0 0

has rank 3, so the kernel of p(A)? has dimension 5—3 = 2, i.e. d(z—2,2) = 2.
Next

8 16 8 0 —16
8 16 8 0 —16
p(A)P=]-8 —-16 —8 0 16
-8 —16 -8 0 16
8 -8 0 0 16

has rank 2, so the kernel of p(A)? has dimension 5—2 = 3, i.e. d(z—2,3) = 3.
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We continue:

-32 —64 —16 0 64
-32 —64 —16 0 64
p(A)=132 64 16 0 —64
32 64 16 0 —64
0 0 18 0 0

has again rank 2, so the kernel of p(A)* has dimension 5 — 2 = 3, i.e. d(x —
2,4) = 3. At this point we can stop our process and conclude that d(z —
2,m) = 3 for all m > 3 (see exercise below for an explanation). From the
formulas of Theorem 5 we see that M(z —2,3) = 1 and M(z —2,m) = 0 for
all m # 3.

Now we do the same for the polynomial p(z) = z? + 4. Thus

3 -4 3 —40
-3 4 -3 4 0
p(A)=A*+4I=|5 4 5 4 0
9 4 1 12 0
1 4 1 4 0

has rank 3, hence the kernel of p(A) has dimension 5—3 = 2, i.e. d(z%+4,1) =

2. Next
0 -32 32 -64

0 32 -32 64
p(A)?*=164 32 32 64
128 32 32 128
32 32 0 64 0

o O O O

has again rank 3, hence the kernel of p(A)? has dimension 5 — 3 = 2, i.e.
d(z®> + 4,2) = 2. As before, at this point we can stop our process and
conclude that d(z% + 4,m) = 2 for all m > 1. The formulas of Theorem 5
yield M(z? +4,1) =1 and M(z* + 4,m) =0 for all m # 1.

Our computations so far show that any rational canonical decomposition of
R® with respect to T will contain a cyclic space < v > with p, = (z — 2)3
and a cyclic space < w > with p,, = 22 + 4. Since dim < v >= 3 and
dim < w >= 2, we must have R® =< v > @ < w >. Note that at this
point we do not have any explicit candidates for the vectors v, w, we only
know that such vectors must exist. Finding such vectors requires in general
substantially more work and we will get back to this problem later. In our
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particular case however we may find such v, w rather easily: for w we may
take any non-zero vector in the kernel of T2 + 41 and for v any vector which
is in the kernel of (T' — 21)3 but is not in the kernel of (T — 27)? will work.

Exercise. Explain why the above choices for v and w work.

Exercise. a) Let T : V. — V be a linear transformation. Prove that
ker T% C ker T*! and ImT**! C ImT" for every non-negative integer i. Prove
furthermore that if ker 7% and ker 7%*! have the same dimension for some
integer k then all the kernels ker T* have the same dimension for i > k.

b) Use a) to show that if the matrices A* and A**! have the same rank, then
all the matrices A* with ¢ > k have the same rank.

Exercise. Follow the Example above to find the numbers M (z — 2,m),
M (z% + 4,m) for the linear transformation 7' : R® — RS given by the
matrix

2 0 0 0 O
-3 2 2 0 -2
B=]1 0 0 0 2
3 0 -2 2 2
1 2 0 0 O

(You should get that M(z —2,1) = 1= M(z —2,2) and M(z%+4,1) =1).

The computations in the Example are rather straightforward (but tedious).
There is however one question which a curious reader must have asked by
now: how did we know that z — 2 and 2% + 4 are the polynomials to look at?
In other words, how to find the irreducible polynomials which can be anni-
hilators of some vector of V7 In order to answer this question we introduce
the following two polynomials. Consider a rational canonical decomposition
V =<wv; > @..8 < vy > and let the annihilator of v; be p,, = qf", where
g; is a monic irreducible polynomial for ¢ = 1,2...,l. We have proved that
the sequence p,,, Pu,, ..., Py, 18, up to order, the same for all rational canonical
decomposition. We define two polynomials pr, gr as follows:

e pp is the product of all the polynomials p,,, i.e. pr = qflqu...qld’. We
call it the characteristic polynomial of 7.

e gr is the least common multiple of the polynomials p,,. We call it the
minimal polynomial of 7.
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It is clear from the definition and our previous results that

e the polynomials pr and ¢r do not depend on the rational canonical
decomposition.

e gr|pr and pr and gr have the same irreducible divisors.
e degpr =dimV (since degp,, = dim < v; >).

e an irreducible monic polynomial p is the annihilator of some vector in
V' (which is the same as to say that M(p, m) # 0 for some m) iff p|gr
or equivalently p|pr.

Example. Suppose that | =5, p,, =2 — 1, p,, = (x — 1)?, p,, = (z — 1)%,
Duvy = ($2 + 1)2) Dus = (xQ + 1)2 Then pbr = (LU - 1)7('7:2 + 1)4 and qr =
(x —1)* (22 + 1)~

The main feature of the polynomials pr and g7 is that they can be ex-
plicitly computed. It turns out that pr is the usual characteristic polyno-
mial defined in terms of determinants and there is a very nice algorithm to
compute it. At this point however we do not have at our disposition the
machinery of determinants so we focus on the polynomial ¢r. We have the
following simple, but crucial observation.

Proposition 4. The polynomial qr is the unique monic polynomial with the
property that for any polynomial f we have f(T) = 0 iff gr|f. Equivalently,
qr is the monic polynomial of lowest possible degree such that qr(T) = 0.

Proof: Since p,,|qr for every i, we see that qr(T)(v;) = 0. This means
that all the spaces < v; > are contained in the kernel of ¢r(7T), so V is in its
kernel, i.e. gr(T) = 0.

Now if f(T) = 0 for some polynomial f, then f(T")(v;) = 0 so p,,|f for
all 5. Thus gr|f. O

In order to find the minimal polynomial ¢ we may proceed as in the proof of
Theorem 1. Note that the linear operators I, T, T?, ... are elements of a finite
dimensional vector space L(V,V). Thus they are linearly dependent. So
there are scalars by, ..., by, not all 0 such that byT° + ... + b, 7™ = 0. Taking
m smallest possible we may assume that b,, = 1 and then the minimal
polynomial gr equals ™ + b,,_12™ ! 4 ... + by. It is clear that m is bounded
above by the dimension of L(V,V), i.e. by n%. But we proved above that in
fact it is bounded by n, a fact not obvious at all.
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The observation we just made suggests a simple algorithm for finding ¢r.
We simply consider I, T,T?, ... as vectors in the vector space L(V, V) and we
have to find largest m such that I,T,T?,..., 7™ ! are linearly independent
and then express T™ as a linear combination of I,T,T?, ..., T™ 1.

Example. Let us see how our algorithm works for 7' from the previous
example. We compute the powers of A:

—1 —4 3 —4 0) (-2 -8 2 -6 8
-3 0 -3 4 0 2 0 -10 12 8
A’=|5 4 1 4 o], A=|10 8 6 12 -8,
9 4 1 8 0 22 8 10 20 -8
1 4 1 4 —4) \2 0 -2 12 0
—8 0 8 —32 0) [—64 0 16 —86 —32
24 16 -8 32 0 64 32 24 80 —32
A'=124 0 8 32 0], A°=[9 0 16 8 32
56 0 24 48 0 176 0 64 110 32
24 0 -8 32 16) \ 96 32 16 80 0

The vector space of all n x n matrices over a field K can be identified with
K™ by identifying a matrix (a; ;) with the vector

(a1,1, Q1,25 -+y By, A2,1, 02,25 -+, A2,n5 A3 1, -+ an,n)-
For example, the matrix A is identified with
(17 Oa 27 _17 _27 _17 27 07 1; _2a 17 07 07 1; 27 27 07 _17 3) 27 17 27 Oa 17 0)

Thus in order to find the minimal polynomial of 7" we row reduce the matrix
M below to get N.
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11 -1 -2 -8 —64) /10000 3
00 -4 -8 0 0 01000 —48
02 3 2 8 16 00100 32
0 -1 -4 —6 —-32 —86 00010 —16
0 -2 0 8 0 -32 00001 6
0 -1 -3 2 24 64 00000 O
1 2 0 0 16 32 00000 0
0 0 -3 -10 -8 24 00000 0
0 1 4 12 32 80 00000 0
0 -2 0 8 0 -32 00000 0
01 5 10 24 96 00000 O
00 4 8 0 0 00000 0
M=|1 0 1 6 8 16 N=|oo0o000 0
0 1 4 12 32 80 00000 0
02 0 -8 0 32 00000 O
0 2 9 22 56 176 00000 0
00 4 8 0 0 00000 0
0 -1 1 10 24 64 00000 0
1 3 8 20 48 110 00000 0
02 0 -8 0 32 00000 O
01 1 2 24 96 00000 0
02 4 0 0 32 00000 0
00 1 -2 -8 16 00000 0
0 1 4 12 32 80 00000 O
\1 0 -4 0 16 0/ \0 0000 0)

It follows that A5 = 321 — 484 + 32A% — 1643 + 6A4* and the minimal
polynomial g = 2% —62*+162% — 3222 +48x — 32. Once we have the minimal
polynomial, we need to factor it into a product of irreducible polynomials. In
our case, we get that gr = (z —2)3(2%+4). This explains why we considered
the irreducible polynomials z — 2 and z2 + 4 in the previous example.

2 -1
Example. Let us find the minimal polynomial of the matrix B= | 4 -2
-3 2
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First we compute B? and B3:

—6 4 4 -8 6 0
B’=|-6 4 6 and B3=|-14 10 2
-1 1 -1 5 -3 —1
Then we find the reduced row-echelon form N of the matrix M:
1 2 -6 -8 1 00 2
(() -1 4 6 \ (0 10 —2\
0 2 4 0 001 1
0 4 -6 —-14 000 O
M=1]1 -2 4 10 N=1]10 00 0
0 2 6 2 000 O
0 -3 -1 5 000 O
0 2 1 -3 000 O
11 -1 1) \0 0 0 o)

From N we see that B3 = 2] — 2B + B2, so the minimal polynomial qgp =
2®— x>+ 22 —2. Note that 1 is a root of the polynomial g, so gz —1)(z*+2).
If we work over the field R of real numbers, then 22 4+ 2 is irreducible. Thus a
rational canonical decomposition for B has one cyclic summand < v; > with
annihilator z — 1 (so it has dimension 1) and one cyclic summand < vy >
with annihilator z? + 2 (so it has dimension 2). Note that v; is a non-zero
vector in the kernel of B — I. Since this kernel is of dimension 1, the vector
v1 is unique up to a scalar multiple and simple computation of the kernel
yields v; = (4,6,1) (or any multiple of this vector). For v, we may take any
non-zero vector in the kernel of B? + 21 (why?). This kernel is of dimension
2 (hence must be equal to < ve >; this answers the question; how?) and we
may take, for example, vy = (1,2,1).

Suppose now that we consider B over the field C of complex numbers.
Then 2242 is no longer irreducible and we have g, = (z—1)(z—iv/2)(z+iv/2).
Thus a rational canonical decomposition for B (over C) has three cyclic
factors, each of dimension 1: < w; > @ < wy > @ < w3 >. As before, w;
is a non-zero vector in the kernel of B — I, so we may take w; = (4,6,1).
Similarly, wy is a non-zero vector in the kernel of B — ¢4/2 and a simple
computation yields ws = (1 + V2,2 + iV2, —1). Finally ws is a non-zero
vector in the kernel of B 4 iv/21I so we may take ws = (1—1iv/2,2—iv/2, —1).

The moral of the above consideration is that the form of a rational canon-
ical decomposition depends on the field of scalars. Most convenient field for
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many purposes is a field over which all the irreducible factors of the minimal
polynomial are of degree 1. Over the field of complex numbers every irre-
ducible polynomial has degree 1 (this is a very important fact often called
the Fundamental Theorem of Algebra).

Exercise. Let T : V — V be a linear transformation and let vy, ..., v, be
a basis of V. Prove that the minimal polynomial g7 is equal to the least
common multiple of the annihilators p,,, ..., py, of v1,...,V,.

The last exercise gives an alternative method of computing the minimal
polynomial. It has the advantage that one does not have to work with ma-
trices of big size but instead one needs to compute n annihilators. The real
advantage of this method though is that with some luck the annihilators will
be of lower degree than g7 so it will be easier to find the decomposition of
them into irreducible factors.

Exercise. Apply this method to find the minimal polynomial of the matrices
A, B in the previous examples.

Now we introduce a new, very useful basis of the cyclic space < v >
when the annihilator p, = p” is a power of an irreducible monic polynomial
p. Suppose that p = 2% + a;_12*~! + ... + ao. We have the following

Definition 9. Let v be a vector with annihilator p, = p", where p = z* +
ap_12* 1+ ...+ ag is irreducible. The canonical basis corresponding to v is
the ordered basis

v, T(v), .., T (v), p(T) (v), (Tp(T)) (v), ..., (T*p(T)) (v), p*(T) (v), --rey " (T) (),

(Tp" H(T))(v), .., (T*1p"H(T) (v)-

The nice thing about the canonical basis is that the matrix representation
of T on < v > in this basis is very simple and expressed only in terms of the
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coefficients of p (and not of p”). It looks like:

(0 0 --- 00 =—a
10 - 00 -—a
01 --- 00 =—a
00 --- 10 —Qap—2
00 -.- 01 —Qar—1

1 00 -+ 00 =—ap

10 - 00 —a

01 --- 00 =—a

00 - 10 —Qar—2

00 --- 01 —Qar—1

1

- O = O
(aw]

o -
O e

\ 0 0

where the empty space consists of zeros.

Combining all the canonical bases of the cyclic summands of a canoni-
cal decomposition produces a basis of V' which is usually called a rational
canonical basis of V' with respect to 7. Often we will just call it a rational
canonical basis of T'. A more precise definition is given by:

Definition 10. Let V =< v; > &...0 < v; > be a rational canonical decom-
position of V' with respect to T. The rational canonical basis associated
to vy, ...,u; 1s the ordered basis obtained by taking the canonical basis corre-
sponding to vy followed by the canonical basis corresponding to v, ... followed
by the canonical basis corresponding to v;. A an ordered basis of V is called a
rational canonical basis of T if it is associated to some rational canonical
decomposition.
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The matrix representation of 7" in a rational canonical basis is block-
diagonal, with blocks on the diagonal corresponding to the cyclic factors of
the underlying rational canonical decomposition (so they are of the form de-
scribed above). Any such matrix representation is called a rational canon-
ical form of T'. So we have

Definition 11. A rational canonical form of T is a matrix representation
of T in a rational canonical basis.

Note that by Theorem 5 a rational canonical form of 7' is unique up to
order of the diagonal blocks.

Remark. Given an n x n matrix A we may apply the above discussion to
the linear transformation 74 : F* — F™ whose matrix representation in
the canonical basis is A. Thus we can speak about a rational canonical form
of the matrix A, rational canonical basis for A, etc.

In practice, the most important case of the theory of rational canonical forms
is when the irreducible divisors of the minimal polynomial are all linear. This
is always the case if the field F' is algebraically closed, for example F' = C.
But even if F' is not algebraically closed, one of the basic results in the
theory of fields says that F is a subfield of an algebraically closed field F.
Thus we can often extend our scalars to F and study the rational canonical
decomposition in this situation and then derive consequences for the original
problem over F'.

Example. Suppose we want to understand the operator T'(z,y) = (—2y, z+
2y) on V = R2, It is easy to see that its minimal polynomial is 2% — 2z + 2,
which is irreducible over R, so the space V' can not be decomposed into a
direct sum of proper T'—invariant subspaces. We have V =< (1,0) > and
the corresponding rational canonical form is A = (9 3?). Now extending our
field to C we see that 22 — 2z +2 = (z — (1 +1))(z — (1 — 1)) is a product of
2 linear polynomials. Thus there is a decomposition C?2 =< v; > @ < vy >,
where the vector v; has annihilator z—(1+44) and the vector v, has annihilator
x—(1—1). It is easy to see that we may take v; = (1—1,1) and vy = (1+1,1).
The rational canonical form in this basis is B = (13'i 10_i). The transition
matrix from the basis v1, vs to the basis (1,0),(0,1) is C = (77 '}%) and its

i/2 (1—i)/2
—i/2 (1+4)/2

T". In fact, the powers of B are very easy to compute: B™ = (

). All this allows us to get simple formulas for
A+9)™ o0 )
0 (- /-

inverse is C~! = (
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If we want to return to the field R, we see that A = CBC ! so A = CB"C.

So let us discuss more carefully the situation when all irreducible divisors of
the minimal polynomial of 7" are linear. We introduce the following definition:

Definition 12. A scalar \ is called an eigenvalue of T' if x — \ divides the
minimal polynomial qr of T. Equivalently, A is a root of qr.

If X\ is an eigenvalue of 7' then there exist vectors v such that p, =z — A.
Any such vector is called an eigenvector of T for the eigenvalue A\. Note
that the equality p, = ¢ — X simply means that T'(v) = v, i.e. that v is in
the kernel of T — \I.

Definition 13. An eigenvector of T' for the eigenvalue \ is any non-zero
vector v such that T'(v) = v, i.e. such that p, = x — \. A generalized
eigenvector of length k of T' for the eigenvalue X\ is any vector v such that

Py = (z — A)*.

We see that an eigenvector is the same as a generalized eigenvector of
length 1. Note that if v is a generalized eigenvector of length k, then < v >
has dimension k£ and the canonical basis associated to v is vg, vy, ..., Vg—1 With
v; = (T—\)*(v) (so vo = v). The matrix representation of T :< v >—< v >
in this basis is very simple: it has A’s on the diagonal, 1’s right below the
main diagonal and zeros everywhere else, so it looks like

A0 0 .. 00
1 X0 .. 0 O
0 1 X .. 0 O
0 0 0 .. A O
0 0 0 ... 1 X

Any matrix of this form is called a Jordan block. A rational canonical
decomposition in the case when all irreducible divisors of ¢, are linear is
called Jordan decomposition, a rational canonical basis is called Jordan
basis, etc.

One of our motivations for the theory of rational canonical forms was the
desire to compute powers of a given matrix A. We have seen that this is
particularly easy when A is similar to a diagonal matrix. We introduce the
following definition:
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Definition 14. A linear transformation T : V. — V s called diagonaliz-
able if V' has a basis which consists of eigenvectors. In other words, T is
diagonalizable if all direct summands in a rational canonical decomposition
for T have dimension 1. Another equivalent formulation is that the minimal
polynomial g1 is a product of pairwise distinct linear polynomials.

A matriz A is called diagonalizable if the linear transformation Ty as-
sociated to A is diagonalizable. Equivalently, A is diagonalizable iff it is
sitmilar to a diagonal matriz.

Exercise. Explain why the above characterization of diagonalizability are
equivalent.

Exercise. Show that over algebraically closed field a linear transformation
T is diagonalizable iff the minimal polynomial g7 and its derivative ¢/ are
relatively prime (i.e. do not have any common divisors).

It is time to discuss methods which allow to find an actual rational canon-
ical decomposition for a given linear transformation 7. The first step is to
separate direct summands which are annihilated by powers of different ir-
reducible polynomials. Let < v; > & < vy > @...6 < v; > be a rational
canonical decomposition for 7. For an irreducible monic polynomial p define
V(p) as the sum of all those cyclic spaces < v; > in the decomposition whose
annihilator is a power of p. Note that V(p) is non-zero iff p divides gr.

Theorem 6. The subspace V(p) is the same for every rational canonical
decomposition. It can be characterized as the subspace of all vectors whose
annihilator is a power of p. Equivalently, it is the kernel of p(T)™ for any
m sufficiently large (to be more precise, any m larger or equal than M (p),
where M (p) is the largest positive integer k for which M(p,k) # 0). The
vector space V is a direct sum of the spaces V(p).

Proof: Tt is clear that the annihilator of each vector in V' (p) is a power of p.
Let w € V so w can be uniquely written as w = wy+...+w; with w; €< v; >.
Then p™(T)(w) = p™(T)(w1) + ... + p™(T)(w;). Thus p™(T)(w) = 0 iff
p™(T)(w;) = 0 for all i. Now p,, is a power of an irreducible monic polynomial
g;- By Lemma 5 we have w; = 0 if p,, is not a power of p and therefore
w € V(p). So indeed V(p) is the set of all vectors whose annihilator is a
power of p. This shows that V (p) is the same for every decomposition. That
V is the direct sum of the subspaces V(p) is clear from their definition. O
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In practice, it is easy to find a basis of V(p), since it is the kernel of p(T)M®),
Once we have a basis of V(p) we can find the matrix of T : V(p) — V(p)
in this basis and then try to find a rational canonical decomposition of V' (p).
Thus it is enough to know how to find a rational canonical decomposition
in the case when the minimal polynomial is a power of a single irreducible
polynomial.

Algorlthm Let us now describe an algorithm which produces a rational
canonical decomposition for a linear transformation 7: V — V.

Step 1. Find the minimal polynomial gr or the characteristic polynomial
pr for T'. Find all irreducible divisors of ¢ or pr.

For each irreducible divisor p of ¢y do the following. Let d be the degree
of p.

Step 2. Find a basis of V(p). In other words, find a basis of the kernel of
p(T)M®) or any larger power of p(T') (note that M (p) is simply the power of p
in the minimal polynomial gr). If you know the characteristic polynomial but
not the minimal, find a basis of the kernel of p(T')* where k is the exponent
of p in pr. Equivalently, find a basis of the kernel of p(T)¥™V. We will work
with the space V(p) in coordinates with respect to this basis.

Step 3. Find the matrix A of T : V(p) — V(p) in the basis constructed
in Step 2. Compute the matrix B = p(A). Note that to find A one needs
to express the image T'(v) of every vector in the basis from Step 2 as linear
combination of vectors in this basis. Compute the powers B2, B3,..., BM®) =
0. (Note that M(p) is the smallest exponent such that BM®) = 0 so you
compute here M (p) if you do not know it from steps 1-2). Compute a basis
of solutions to the system B*z =0 for k = 1, ..., M(p).

For each i let V(p) be the image of p(T)* : V(p) — V(p) (we set VO(p) =
V(p)). Thus V?(p) is spanned by the columns of B’. Note that i = M(p) is
the smallest integer for which V*(p) = {0}, i.e. B* = 0. The next steps of the
algorithm will construct a rational canonical decomposition of VM®)=1(p),
then of VM®)~2(p), .. and at the end we get a rational canonical decompo-
sition of V(p) = VO(p).

Suppose that we have already found a rational canonical decomposition

VEp) =< w, > ®..0 <w, >
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of V¥(p) for some k. Let p% be the annihilator of w;. We are going to find a
rational canonical decomposition of V*71(p).

Step 4 (M (p) — k). For each i find a vector v; € V*~1(p) such that p(T)v; =
w;. You do this as follows: find a solution to the system B*z = w; and take
v; = B*¥"!z. (You may wonder why we can’t simply take for v; a solution to
Bz = w;; the reason is that we would not know if it belongs to V*~1(p).).
The annihilator of v; is p%*1. Note that if Bw; # 0 then in the previous step
4 (M(p) — k — 1) you found a vector z such that B¥*'z = Bw; and you can
use the same z here.

It turns out that the cyclic spaces < vy >,...,< v; > form a part of a rational
canonical decomposition of V*~!. The missing cyclic summands are all of the
form < v >, where the annihilator of v is p, i.e. Bv = 0. To find them use
the basis by, ..., b, of ker p(T)*, i.e. a basis of solutions to the homogeneous
system B¥z = 0 found in step 3. Compute u; = B*¥~1b; (these vectors span
the space V*~! Nkerp(T)).

b) Consider the matrix M whose columns are

Bdl_l’wl, ABdl_l’wl, A2Bd1_1w1, ceny Ad_lel_l’wl,
Bd2_1w2, ABd2_1w2, A2Bd2_1w2, ceey Ad_le2_1’IU2, ceny
Bdt_lwt, ABdt_l'l,Ut, A2Bdt_1wt, ceey Ad_let_lwt,
2 d—1 2 d—1 2 d—1
uy, Auy, A%uq, ..., A% “ug, ug, Aug, A%us, ..., AY ug, ..., up, Auy, AUy, .., AT U,

Recall that d here is the degree of p. For d = 1 this list of columns is
particularly simple:

di—1 da—1 di—1
B wy, B® ws, ..., B* twy, uq, ug, ..., U

Find the row-echelon form NV of this matrix. Let u,,,..., u;,, be those among
the vectors uy, ..., u, which correspond to pivot columns of N. Set v} ; = u;,,,
7=1,....,m. Then

<V >B..0<v > < Vg1 >D...O < Vg >

is a rational canonical decomposition of V*71,
Starting with k = M (p) we repeat the Step 4 M (p) times and as a result
we get a rational canonical decomposition of V (p).
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Very important Remark. The vectors constructed by our algorithm for
V(p) are expressed in terms of the basis of V(p) found in Step 2. This means
that what we get is coordinates of the vectors in this basis. So at the end
one has to express this vectors back in terms of the original basis of V.

Remark. This is not the most efficient algorithm. But it is relatively simple
to describe.

Example. Let us see how the algorithm works for a linear transformation
T : R" — R7 given by the matrix

1 15 -2 2 =3 1\
-1 3 4 -2 1 =21
-2 29 33 41
C=1-226 -1 2 -3 1
0 01 0 3 -11
-2 28 -3 4 31
0 00 O O O 1)

Step 1. We skip the details since we discussed them earlier. We find that
qr = (x — 2)%(z — 1).

Step 2. We deal first with p(z) = z — 2. We have M(z — 2) = 2. We
compute

(0000001\
0000000
000000 2
p(CYMP) = (C -2 =0 0000 0 1
0000000
000000 3
\0000001}

A basis of the kernel of p(C)? is h, = (1,0,0,0,0,0,0), hy = (1,1,0,0,0,0,0),
hs = (0,0,1,0,0,0,0), hy = (0,0,1,1,0,0,0), hs = (0,0,0,0,1,0,0), hg =
(0,0,0,0,1,1,0). (We could choose a simpler basis, but to have a better
illustration of the algorithm we chose note to).
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Step 3. The matrix of T : V(z — 2) — V(z — 2) in this basis is

2 01 1 1 0
-1 2 4 2 1 -1
0 0 3 1 1 0
A= -2 0 6 5 2 -1
2 0 -7 —4 —1 1
—2 0 8 5 4 1
Thus
0 01 1 1 0
10 4 2 1 -1
0 01 1 1 0
B=A-2I= -2 0 6 3 2 -1
2 0 -7 —4 -3 1
-2 0 8 5 4 -1

We have B? = 0.

Step 4. We start with V?(xz — 2) = {0}. We need to find a basis of
solutions to B?z = 0. Since B% = 0, we see that b; = (1,0,0,0,0,0), by =
(07170707070)7 bs = (07071707070)7 by = (0,0,0,1,0,0), bs = (07070707170)7
b = (0,0,0,0,0, 1) is a basis of solutions. Now u; = Bb; = (0,—1,0,—2,2,—2),
Uy = Bb2 = (0,0,0,0,0,0) us = Bbg = (1,4,1,6,—7,8), Ug = Bb4 =
(1,2,1,3,—4,5), us = Bbs = (1,1,1,2,—3,4), ug = Bbg = (0,—1,0,—1,1, —1).
Thus

0O 01 1 1 0
-10 4 2 1 -1
0O 01 1 1 0
M= -2 0 6 3 2 -1
2 0 -7 -4 -3 1
-2 0 8 5 4 -1

(Note that B = M. This is not a coincidence. Why?). The reduced row-
echelon form is

-1 -1

-1 -1

2 1

OO OO O
OO OO oo
(=il =)
OO O = O o

0 0
0 0
0 0



Thus we take v = u; = (0,—1,0,—-2,2, —2), vy = ug = (1,4,1,6,—7,8) and
v =ug = (1,2,1,3,—4,5) and we have a rational canonical decomposition

Vie—2) =< >®<vy>® <vsg>.

Now we repeat step 4 to get a rational canonical decomposition for V°(z—
2) = V(z — 2). First we have to find vectors 21, 22,23 € V°(z — 2) such that
Bz; = v;. Since k = 1 in our case, we just solve the systems Bz; = v;. For
example, for 7 = 1 the system has augmented matrix

0o 0 1 1 1 0 O
-10 4 2 1 -1 -1
o o1 1 1 0 O
-2 0 6 3 2 -1 =2
2 0 -7 -4 -3 1 2
-2 0 8 &5 4 -1 =2

so its reduced row echelon form is

1000 -1 —-11
0010-1-10
0001 2 1 0
0000 O O O
0000 O O O
0000 O O O

and we may take z; = (1,0,0,0,0,0). Similarly, z = (0,0,1,0,0,0) and z3 =
(0,0,0,1,0,0) work. According to our algorithm, < z; > ® < 25 > @ < 23 >
is a part of a rational canonical decomposition for V°(z — 2). To find the
other part (it is easy to see that in this case there is no other part, since
VO(z — 2) has dimension 6, but we will pretend that we do not know this to
illustrate the step in the algorithm) we need to find a basis of the solutions
to B¥z = Bz = 0. The reduced row echelon form of B is

1000 -1 -1
0010 -1 -1
0001 2 1
0000 O O
000O0 O O
0000 O O



so by = (0,1,0,0,0,0), b, = (1,0,1,—2,1,0), b3 = (1,0,1,—1,0,1) is a basis
of solutions. Since B*~! = B% = I, we have u; = b; for all i so we need to row
reduce the matrix with columns B%;, B%v,, B%s3, by, b, bs, i.e. the matrix

0 1 1 0 1 1
-1 4 2 1 0 0
0 1 1 0 1 1
-2 6 3 0 -2 -1
2 -7 -4 0 1 0
-2 8 5 0 0 1

The reduced row echelon form is
100 3 4 2
010 2 10
001 -2 01
000 O OO
000 O 0O
000 O 0O

Thus indeed there is no pivot in the columns corresponding to by, bs, b3, i.e.
we do not have anything to add and < 21 > ® < 23 > @ < 23 > is a rational
canonical decomposition of V%(z —2) = V(z—2). Now z; = (1,0,0,0,0,0) in
the basis hy, ..., hg of V(z — 2). This means that z; = hy = (1,0,0,0,0,0,0).
Similarly ze = hs = (0,0,1,0,0,0,0) and 23 = hy = (0,0,1,1,0,0,0) (this
step is what the ”very important remark” was about).

It remains to find a rational canonical decomposition of V(z —1). We
could repeat the whole algorithm, but instead let us observe that V(z — 1)
is one dimensional so it must be < v >, where v is any non-zero vector in
the kernel of T'— I. This kernel has dimension 1 and a simple computation
yields v = (1,0,2,1,0,3,1). Thus we found that

V=<xk21>®<20>P<23>P<v>

is a rational canonical decomposition of V', where z; = (1,0,0,0,0,0,0),
z = (0,0,1,0,0,0,0), z3 = (0,0,1,1,0,0,0) and v = (1,0,2,1,0,3,1).
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