Math 404, Exam III

April 29, 2004; Due May 5, 2004

Problem 1. Find the minimal and characteristic polynomials for the linear transformation $T: \mathbf{R}^5 \longrightarrow \mathbf{R}^5$ given by the matrix

$$B = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ -3 & 2 & 2 & 0 & -2 \\ 1 & 0 & 0 & 0 & 2 \\ 3 & 0 & -2 & 2 & 2 \\ 1 & 2 & 0 & 0 & 0 \end{pmatrix}.$$

Find a rational canonical decomposition for T. Compute B^{1000} .

Problem 2. Let $T: \mathbb{R}^4 \longrightarrow R^4$ be given by T(a, b, c, d) = (a + b, b + c, c + d, d + a).

- a) Find the annihilator of v = (1, 0, -1, 0) and of w = (1, 0, 0, 0).
- b) Find the minimal polynomial of T.
- c) Find a rational canonical form of T and a basis in which T has this form.

Problem 3. a) Find the characteristic polynomial, the eigenvalues and the eigenvectors of the matrix

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

Is this matrix diagonalizable?

b) Find all x such that the determinant of the matrix

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 1 & x & x \\ x & 1 & 0 & -1 \\ x & 0 & 1 & 1 \end{pmatrix}$$

equals 0.

Solve 3 of the following problems:

Problem 4. Let U be a T-invariant subspace of V and let S be a subset of V. Show that the set I of all polynomials f such that $f(T)(v) \in U$ for every $v \in S$ (i.e. $I = \{f : f(T)(v) \in U \text{ for all } v \in S\}$) is an ideal. Show that this ideal contains non-zero polynomials. Consider the case when $U = \{0\}$ and S = V and conclude that there exists a monic polynomial q_T such that for any polynomial f, we have f(T) = 0 iff f (Of course, f is the minimal polynomial of f.)

Problem 5. Let $T: V \longrightarrow V$ be a linear transformation and let $v \in V$ be a non-zero vector.

a) Prove that any T-invariant subspace of a cyclic subspace is cyclic.

Hint. Let U be a T-invariant subspace of < v >. Consider the unique monic polynomial q with the property that for any polynomial f, we have $f(T)(v) \in U$ iff q|f. Show that U = < w >, where w = q(T)(v). Show also that $q|p_v$.

b) Prove that if p_v is a power of an irreducible polynomial and U, W are T-invariant subspaces of < v > then either $U \subseteq W$ or $W \subseteq U$. Conclude that < v > cannot be decomposed into a direct sum of proper T-invariant subspaces.

Problem 6. Let $T: V \longrightarrow V$ be a linear transformation and let $v_1, ..., v_n$ be a basis of V. Prove that the minimal polynomial q_T is equal to the least common multiple of the annihilators $p_{v_1}, ..., p_{v_n}$ of $v_1, ..., v_n$.

1

Problem 7. a) Let $T:V\longrightarrow V$ be a linear transformation. Prove that $\ker T^i\subseteq \ker T^{i+1}$ and $\operatorname{Im} T^{i+1}\subseteq \operatorname{Im} T^i$ for every non-negative integer i. Prove furthermore that if $\ker T^k$ and $\ker T^{k+1}$ have the same dimension for some integer k then all the kernels $\ker T^i$ have the same dimension for $i\geq k$.

b) Use a) to show that if the matrices A^k and A^{k+1} have the same rank, then all the matrices A^i with $i \geq k$ have the same rank.