Solutions to Exam 2, Math 407 & Math 574

Problem 1. a) Explain the meaning of [ag, a1, asg,...], where a; are integers and a; > 0
for i = 1,2.... Given a real number z, how do we find integers ag, a1, as, ... which are
positive except possibly ag and such that z = [ag, a1, a2,,...]7 (8 points)

b) Express /15 as a simple continued fraction. Explain carefully all details. (8 points)

c) What is the value of [2,3,1,3,1,3,1,...] = [2,3,1]7 Show all necessary work. (8 points)

d) Compute the fifth convergent of the continued fraction z = [3,1,6,1,6,...] = [3,1,6].
Among all rational numbers whose denominator is at most 63, which one is closest to x?
(8 points)

Solution. a) [ag, a1, as,...| is defined as the limit
[ag,a1,a2,,...] = lim [ag,aq,...,ay)
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where
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1 N 1

@yt -
2 1
G,

We proved that under the assumptions (a; are integers and a; > 0 for ¢ = 1,2...) the limit
always exists and is an irrational number.
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Given z, we define a sequence xj, recursively by g = x and ;1 = —————. When

g — |z
x is irrational this defines an infinite sequence. When z is rational, we get z, to be an

integer for some n and then we stop. We have a; = |x;] for : =0,1,....
b) We start with 9 = v/15, ag = [zo] = 3. Thus
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x1 and |x1] =1,
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Ty = = =+v15+3 and |x2] =6,
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At this point we see that x3 = x1, so x4 = 9, x5 = x3 = 1, and so on. Thus

V15 =[3,1,6,1,6,1,6...] = [3,T,6].
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c) We have [2,3,1] =2+ ﬁ So we first compute the purely periodic part z = [3,1]:
1 x dr + 3
=3+ =3+ = .
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3+ 21
Thus 22 + x = 4z + 3 and 2% — 32z — 3 = 0. It follows that z = —s Since x > 2, we
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have x = +2\/> Thus
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c) The k-the convergent of a continued fraction [ao,a1,az,...] is [ao, a1,...,ax] = EE,

where the numbers p;, ¢; are defined recursively by
Pn = anPpn—1+Pn—2,p—1 = 1,po = ap, and ¢n = angn-1+gn-2,¢-1 =0,q0 = L.
Alternatively, we can use the formula
ol [ o) [ ol ] - [
1 0|1 O 1 0/10 qr|
In our case, z = [3,1,6,1,6,1,...]. Thus

po=3,p1 =4,p2 = 27,p3 = 31,ps = 213, p5 = 244

and
go=1,q=1,¢="74q3=28,q1=55,¢5 =063.
Thus the fifth convergent for x is %.

We proved that among all fractions with denominator bounded by ¢, the closed to x is
the k-th convergent. Thus among all fractions whose denominator does not exceed 63, the
closest to x is %.

Problem 2. a) Define the Legendre symbol and the Jacobi symbol. State quadratic
reciprocity. (8 points)

b) Is the congruence x?+10x+7 = 0 (mod 2017) solvable? Carefully justify your answer.
You can use the fact that 2017 is a prime. (8 points)

¢) Find all solutions to the congruence 3z% — 2z — 9 = 0 (mod 19) . (8 points)

Solution. a) An integer a is called a quadratic residue modulo a prime p if p t a and
a = 22 (mod p) for some integer x. An integer a is called a quadratic non-residue
modulo a prime p if there is no integer x such that a = 2 (mod p) . When p is an odd

prime then we define the Legendre symbol (%) as follows

1 if a is a quadratic residue modulo p;
a
<p> = ¢ —1 if a is a quadratic non-residue modulo p;
0 if pla.

The Jacobi symbol (%) is defined for any integer a and any odd integer m as follows:
write m = p1 ...ps as a product of prime numbers and set

(=G0 G (G)

Qadratic Reciprocity:



1. If p and ¢ are distinct odd prime numbers then

(q): —(%) if p=3=gq (mod 4) ;

P (%) if at least one of p,q is =1 (mod 4) .

p—1g—1

Equivalently, (%) (%) =(-1)7=z 7.

5 (2): 1  ifp=1,7 (mod 8) ;
AP 1 ifp=3,5(mod38) .

p2-1

Equivalently, (%) =(-1)"73 .

3 (71>_ 1 ifp=1 (mod4);
AP/ 1-1 ifp=3(mod4).

Equivalently, (%) =(-1)7=.

Remark. Often by quadratic reciprocity one only means part 1. The other two parts
are simpler and were proved earlier.

Qadratic Reciprocity for Jacobi symbol:

1. If m and n are distinct odd numbers then

("):{(ZL) if m=3=n (mod 4) ;

m () if at least one of m,n is =1 (mod 4) .

Equivalently, if m,n are relatively prime, then (%) (f

2 (2) = 1 ifm=1,7 (mod 8) ;
m —1 ifm=3,5 (mod 8) .

Equivalently, (2) = (—1)" s
3. (=2) = 1 ifm=1(mod4);
Aml =1 ifm =3 (mod 4) .

m—1

Equivalently, (_ﬁl) =(-1)"= .

b) Note that 22410z +7 = (x+5)? — 18. Thus our congruence is equivalent to (z +5)? =
18 (mod 2017) . This congruence is solvable if and only if 18 is a square modulo 2017. We

have
18\ [ 2 9\ [ 2 .
2017 ) \2017) \ 2017/ \2017/)

since 2017 = 1 (mod 8) . Thus 18 is indeed a square modulo 2017 and our congruence is
solvable

Remark. In general, if p is an odd prime and p { a then a quadratic congruence az? +
bz +c =0 (mod p) is solvable if and only if the discriminant b? — 4ac is a square modulo

p.

c¢) The congruence 3z? — 2x — 9 = 0 (mod 19) is equivalent to 3(3z2 — 2z — 9) =
0 (mod 19) , which is the same as (3z — 1)2 = 28 = 9 = 3% (mod 19) . It follows that



3r —1 =3 (mod19) or 3z —1 = —3 (mod 19) . The first congruence has solution
x =14 (mod 19) , the second congruence has solution z = 12 (mod 19) .

Problem 3. a) Define perfect numbers. What can you say about even perfect numbers?
(7 points)

b) Prove that if £ > 1,m > 1 are integers then o(km) > ko(m). (7 points)

c¢) Show that if m, n are perfect numbers and m|n then m = n. (7 points)

Solution. a) A positive integer n is called perfect if it is equal to the sum of all its proper
divisors, i.e. if o(n) = 2n, where o(n) is the sum of all positive divisors of n. It was proved
by Euclid and Euler that an even number n is perfect if and only if n = 2¥=1(2% — 1) for
some k such that 2F — 1 is a prime number. It is not known if there exists an odd perfect
number.

b) Let dy,ds, ..., ds be all the positive divisors of m, so o(m) = dy + ...+ ds. Each of the
numbers 1, kdy, kdo, . .., kds is a positive divisor of km. Thus

o(km) > 14 kdy + kdo + ... + kds =1+ ko(m) > ko(m).

c¢) Suppose that m is a perfect number and n = km for k > 1. Then o(m) = 2m and, by
part b), we have
o(n) =o(km) > ko(m) = 2km = 2n

so sigma(n) > 2n, i.e. n is not perfect.

Problem 4. a) Define the Mébius function. State the Mobius inversion formula. (8
points)

1 ifnisodd
b) Let f(n) = { R Show that f is multiplicative. (7 points)

0 if n is even.

if n is odd
c) Let g = ¢ x f (here ¢ is the Euler function). Prove that g(n) = " s
n/2 if n is even.

points)
Solution. a) The Mobius function p is defined by

1 ifn=1,
p(n) =< (=1)" if n=pips...p, is a product of r distinct primes,

0 in all other cases.

It is the convolution inverse of 1.

Mébius inversion formula: if F' = f*1 then f = Fxp. In other words, if Fi(n) =3_,,, f(d)
for all n, then f(n) =3_,, F(d)u(n/d) for all n.

b) We will show that f is completely multiplicative. If at least one of m,n is even then
f(m)f(n) = 0 an mn is also even, so 0 = f(mn). Thus f(mn) = f(m)f(n) in this



case. If both m and n are odd then f(m) = 1 = f(n) and mn is also odd. Thus
1= f(mn) = f(m)f(n).
c) Since f and ¢ are both multiplicative, so is ¢ * f. If kK > 1 then

k
(95 )25 = 37 (2 F(2) = p(2h) = 25!

1=0

since f(2¥=%) = 0 for i < k. When m is odd then so is every divisor of m so

(@ f)(m) =3 ¢(d)f(m/d) =Y p(d) =m

dm dlm

since we proved that } ., ¢(d) = n for every n (alternatively, compute (¢ x (") of
powers of odd primes p and use multiplicativity). This, if n is odd we have (¢ * f)(n) =n
and if n = 2¥m is even, with k& > 0 and m odd we have

(¢ [)(n) = (¢ [)(2"m) = (¢ % [)(2*)(¢ * f)(m) = 2" "'m = n/2.
Problem 5. Suppose that x = [ag, a1, ag,...,a,| and a; > 1. Show that
—x=[—ap—1,1,a; — 1,a9,as,...,ay].

What if a; = 17

1
Solution. Let z = [ag,as,...,a,]. Then z = ap + and
a; + —
z
ap—1+1
[—ao—1,1,a1—1,a2,a3,...,an}:—a0—1+—:—a0—1+171’32
1 a1+;
1+
a;— 1+ -
z
1
= —ag — = —z.
0 1
a; + —
z

This computation works when n > 2, but when n = 1 we can replace 1/z with 0 and it
still works.

When a1 = 1, the above does not work as a; —1 = 0 is not allowed in a continued fraction.
We have —[ag, 1,a9,...,a,] = [—ao — 1,14+ ag,as, ..., an].



