Solutions to Exam 2, Math 407 & Math 574

Problem 1. a) Explain the meaning of $[a_0, a_1, a_2, \ldots]$, where a_i are integers and $a_i > 0$ for $i = 1, 2, \ldots$ Given a real number x, how do we find integers a_0, a_1, a_2, \ldots which are positive except possibly a_0 and such that $x = [a_0, a_1, a_2, \ldots]$? (8 points)

b) Express $\sqrt{15}$ as a simple continued fraction. Explain carefully all details. (8 points)

c) What is the value of $[2, 3, 1, 3, 1, 3, 1, \ldots] = [2, \overline{3, 1}]$? Show all necessary work. (8 points)

d) Compute the fifth convergent of the continued fraction $x = [3, 1, 6, 1, 6, ...] = [3, \overline{1, 6}]$. Among all rational numbers whose denominator is at most 63, which one is closest to x? (8 points)

Solution. a) $[a_0, a_1, a_2, \ldots]$ is defined as the limit

$$[a_0, a_1, a_2, \ldots] = \lim_{n \to \infty} [a_0, a_1, \ldots, a_n]$$

where

$$[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_n}}}}.$$

We proved that under the assumptions (a_i are integers and $a_i > 0$ for i = 1, 2...) the limit always exists and is an irrational number.

Given x, we define a sequence x_k recursively by $x_0 = x$ and $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor}$. When x is irrational this defines an infinite sequence. When x is rational, we get x_n to be an integer for some n and then we stop. We have $a_i = \lfloor x_i \rfloor$ for $i = 0, 1, \ldots$

b) We start with $x_0 = \sqrt{15}$, $a_0 = \lfloor x_0 \rfloor = 3$. Thus

$$x_{1} = \frac{1}{\sqrt{15} - 3} = \frac{3 + \sqrt{15}}{6} \text{ and } \lfloor x_{1} \rfloor = 1,$$

$$x_{2} = \frac{1}{\frac{3 + \sqrt{15}}{6} - 1} = \frac{6}{\sqrt{15} - 3} = \sqrt{15} + 3 \text{ and } \lfloor x_{2} \rfloor = 6,$$

$$x_{3} = \frac{1}{(\sqrt{15} + 3) - 6} = \frac{1}{\sqrt{15} - 3} = x_{1} \text{ and } \lfloor x_{3} \rfloor = 1.$$

At this point we see that $x_3 = x_1$, so $x_4 = x_2$, $x_5 = x_3 = x_1$, and so on. Thus

$$\sqrt{15} = [3, 1, 6, 1, 6, 1, 6 \dots] = [3, \overline{1, 6}].$$

c) We have $[2,\overline{3,1}] = 2 + \frac{1}{[\overline{3,1}]}$. So we first compute the purely periodic part $x = [\overline{3,1}]$:

$$x = 3 + \frac{1}{1 + \frac{1}{x}} = 3 + \frac{x}{x+1} = \frac{4x+3}{x+1}.$$

Thus $x^2 + x = 4x + 3$ and $x^2 - 3x - 3 = 0$. It follows that $x = \frac{3 \pm \sqrt{21}}{2}$. Since $x \ge 2$, we have $x = \frac{3 + \sqrt{21}}{2}$. Thus $[2, \overline{3, 1}] = [2, x] = 2 + \frac{1}{x} = 2 + \frac{2}{3 + \sqrt{21}} = 2 + \frac{2(\sqrt{21} - 3)}{21 - 9} = 2 + \frac{\sqrt{21} - 3}{6} = \frac{\sqrt{21} + 9}{6}$.

c) The k-the convergent of a continued fraction $[a_0, a_1, a_2, \ldots]$ is $[a_0, a_1, \ldots, a_k] = \frac{p_k}{q_k}$, where the numbers p_i, q_i are defined recursively by

 $p_n = a_n p_{n-1} + p_{n-2}, p_{-1} = 1, p_0 = a_0, \text{ and } q_n = a_n q_{n-1} + q_{n-2}, q_{-1} = 0, q_0 = 1.$

Alternatively, we can use the formula

$$\begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_k & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p_k \\ q_k \end{bmatrix}$$

In our case, $x = [3, 1, 6, 1, 6, 1, \ldots]$. Thus

$$p_0 = 3, p_1 = 4, p_2 = 27, p_3 = 31, p_4 = 213, p_5 = 244$$

and

$$q_0 = 1, q_1 = 1, q_2 = 7, q_3 = 8, q_4 = 55, q_5 = 63$$

Thus the fifth convergent for x is $\frac{244}{63}$.

We proved that among all fractions with denominator bounded by q_k , the closed to x is the k-th convergent. Thus among all fractions whose denominator does not exceed 63, the closest to x is $\frac{244}{63}$.

Problem 2. a) Define the Legendre symbol and the Jacobi symbol. State quadratic reciprocity. (8 points)

b) Is the congruence $x^2 + 10x + 7 \equiv 0 \pmod{2017}$ solvable? Carefully justify your answer. You can use the fact that 2017 is a prime. (8 points)

c) Find all solutions to the congruence $3x^2 - 2x - 9 \equiv 0 \pmod{19}$. (8 points)

Solution. a) An integer *a* is called a **quadratic residue** modulo a prime *p* if $p \nmid a$ and $a \equiv x^2 \pmod{p}$ for some integer *x*. An integer *a* is called a **quadratic non-residue** modulo a prime *p* if there is no integer *x* such that $a \equiv x^2 \pmod{p}$. When *p* is an odd prime then we define the Legendre symbol $\left(\frac{a}{p}\right)$ as follows

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo } p; \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p; \\ 0 & \text{if } p | a. \end{cases}$$

The Jacobi symbol $\left(\frac{a}{m}\right)$ is defined for any integer a and any odd integer m as follows: write $m = p_1 \dots p_s$ as a product of prime numbers and set

$$\left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_s}\right).$$

Qadratic Reciprocity:

1. If p and q are distinct odd prime numbers then

$$\begin{pmatrix} q \\ p \end{pmatrix} = \begin{cases} -\begin{pmatrix} p \\ q \end{pmatrix} & \text{if } p \equiv 3 \equiv q \pmod{4} ; \\ \begin{pmatrix} p \\ q \end{pmatrix} & \text{if at least one of } p, q \text{ is } \equiv 1 \pmod{4} \\ \text{Equivalently, } \begin{pmatrix} p \\ q \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}. \end{cases}$$
2.
$$\begin{pmatrix} 2 \\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv 1,7 \pmod{8} ; \\ -1 & \text{if } p \equiv 3,5 \pmod{8} . \\ \text{Equivalently, } \begin{pmatrix} 2 \\ p \end{pmatrix} = (-1)^{\frac{p^2-1}{8}}. \end{cases}$$
3.
$$\begin{pmatrix} -1 \\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} ; \\ -1 & \text{if } p \equiv 3 \pmod{4} . \\ \text{Equivalently, } \begin{pmatrix} -1 \\ p \end{pmatrix} = (-1)^{\frac{p-1}{2}}. \end{cases}$$

Remark. Often by quadratic reciprocity one only means part 1. The other two parts are simpler and were proved earlier.

Qadratic Reciprocity for Jacobi symbol:

1. If m and n are distinct odd numbers then

$$\left(\frac{n}{m}\right) = \begin{cases} -\left(\frac{m}{n}\right) & \text{if } m \equiv 3 \equiv n \pmod{4} ; \\ \left(\frac{m}{n}\right) & \text{if at least one of } m, n \text{ is } \equiv 1 \pmod{4} . \end{cases}$$

Equivalently, if m, n are relatively prime, then $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}$.

- 2. $\left(\frac{2}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1,7 \pmod{8} \ ; \\ -1 & \text{if } m \equiv 3,5 \pmod{8} \ . \end{cases}$ Equivalently, $\left(\frac{2}{m}\right) = (-1)^{\frac{m^2-1}{8}}$.
- 3. $\left(\frac{-1}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1 \pmod{4} ; \\ -1 & \text{if } m \equiv 3 \pmod{4} . \end{cases}$ Equivalently, $\left(\frac{-1}{m}\right) = (-1)^{\frac{m-1}{2}}.$

b) Note that $x^2 + 10x + 7 = (x+5)^2 - 18$. Thus our congruence is equivalent to $(x+5)^2 \equiv 18 \pmod{2017}$. This congruence is solvable if and only if 18 is a square modulo 2017. We have

$$\left(\frac{18}{2017}\right) = \left(\frac{2}{2017}\right)\left(\frac{9}{2017}\right) = \left(\frac{2}{2017}\right) = 1$$

since $2017 \equiv 1 \pmod{8}$. Thus 18 is indeed a square modulo 2017 and our congruence is solvable

Remark. In general, if p is an odd prime and $p \nmid a$ then a quadratic congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ is solvable if and only if the discriminant $b^2 - 4ac$ is a square modulo p.

c) The congruence $3x^2 - 2x - 9 \equiv 0 \pmod{19}$ is equivalent to $3(3x^2 - 2x - 9) \equiv 0 \pmod{19}$, which is the same as $(3x - 1)^2 \equiv 28 \equiv 9 = 3^2 \pmod{19}$. It follows that

 $3x - 1 \equiv 3 \pmod{19}$ or $3x - 1 \equiv -3 \pmod{19}$. The first congruence has solution $x \equiv 14 \pmod{19}$, the second congruence has solution $x \equiv 12 \pmod{19}$.

Problem 3. a) Define perfect numbers. What can you say about even perfect numbers? (7 points)

b) Prove that if k > 1, m > 1 are integers then $\sigma(km) > k\sigma(m)$. (7 points)

c) Show that if m, n are perfect numbers and m|n then m = n. (7 points)

Solution. a) A positive integer n is called **perfect** if it is equal to the sum of all its proper divisors, i.e. if $\sigma(n) = 2n$, where $\sigma(n)$ is the sum of all positive divisors of n. It was proved by Euclid and Euler that an even number n is perfect if and only if $n = 2^{k-1}(2^k - 1)$ for some k such that $2^k - 1$ is a prime number. It is not known if there exists an odd perfect number.

b) Let d_1, d_2, \ldots, d_s be all the positive divisors of m, so $\sigma(m) = d_1 + \ldots + d_s$. Each of the numbers $1, kd_1, kd_2, \ldots, kd_s$ is a positive divisor of km. Thus

$$\sigma(km) \ge 1 + kd_1 + kd_2 + \ldots + kd_s = 1 + k\sigma(m) > k\sigma(m).$$

c) Suppose that m is a perfect number and n = km for k > 1. Then $\sigma(m) = 2m$ and, by part b), we have

$$\sigma(n) = \sigma(km) > k\sigma(m) = 2km = 2n$$

so sigma(n) > 2n, i.e. n is not perfect.

Problem 4. a) Define the Möbius function. State the Möbius inversion formula. (8 points)

b) Let $f(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even.} \end{cases}$ Show that f is multiplicative. (7 points)

c) Let $g = \phi * f$ (here ϕ is the Euler function). Prove that $g(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ n/2 & \text{if } n \text{ is even.} \end{cases}$ (8 points)

Solution. a) The Möbius function μ is defined by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^r & \text{if } n = p_1 p_2 \dots p_r \text{ is a product of } r \text{ distinct primes} \\ 0 & \text{in all other cases.} \end{cases}$$

It is the convolution inverse of 1.

Möbius inversion formula: if F = f * 1 then $f = F * \mu$. In other words, if $F(n) = \sum_{d|n} f(d)$ for all n, then $f(n) = \sum_{d|n} F(d)\mu(n/d)$ for all n.

b) We will show that f is completely multiplicative. If at least one of m, n is even then f(m)f(n) = 0 an mn is also even, so 0 = f(mn). Thus f(mn) = f(m)f(n) in this

case. If both m and n are odd then f(m) = 1 = f(n) and mn is also odd. Thus 1 = f(mn) = f(m)f(n).

c) Since f and ϕ are both multiplicative, so is $\phi * f$. If $k \ge 1$ then

$$(\phi * f)(2^k) = \sum_{i=0}^k \phi(2^i) f(2^{k-i}) = \phi(2^k) = 2^{k-1}$$

since $f(2^{k-i}) = 0$ for i < k. When m is odd then so is every divisor of m so

$$(\phi * f)(m) = \sum_{d|m} \phi(d) f(m/d) = \sum_{d|m} \phi(d) = m$$

since we proved that $\sum_{d|n} \phi(d) = n$ for every *n* (alternatively, compute $(\phi * f)(p^k)$ of powers of odd primes *p* and use multiplicativity). This, if *n* is odd we have $(\phi * f)(n) = n$ and if $n = 2^k m$ is even, with k > 0 and *m* odd we have

$$(\phi * f)(n) = (\phi * f)(2^k m) = (\phi * f)(2^k)(\phi * f)(m) = 2^{k-1}m = n/2.$$

Problem 5. Suppose that $x = [a_0, a_1, a_2, \dots, a_n]$ and $a_1 > 1$. Show that

$$-x = [-a_0 - 1, 1, a_1 - 1, a_2, a_3, \dots, a_n]$$

What if $a_1 = 1$?

Solution. Let $z = [a_2, a_3, \dots, a_n]$. Then $x = a_0 + \frac{1}{a_1 + \frac{1}{z}}$ and

$$[-a_0 - 1, 1, a_1 - 1, a_2, a_3, \dots, a_n] = -a_0 - 1 + \frac{1}{1 + \frac{1}{a_1 - 1 + \frac{1}{z}}} = -a_0 - 1 + \frac{a_1 - 1 + \frac{1}{z}}{a_1 + \frac{1}{z}} = -a_0 - \frac{1}{a_1 + \frac{1}{z}} = -a_0 - \frac{1}{a_1 + \frac{1}{z}} = -x.$$

This computation works when $n \ge 2$, but when n = 1 we can replace 1/z with 0 and it still works.

When $a_1 = 1$, the above does not work as $a_1 - 1 = 0$ is not allowed in a continued fraction. We have $-[a_0, 1, a_2, \ldots, a_n] = [-a_0 - 1, 1 + a_2, a_3, \ldots, a_n]$.