Solutions to Exam 2, Math 407 \& Math 574

Problem 1. a) Explain the meaning of $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, where a_{i} are integers and $a_{i}>0$ for $i=1,2 \ldots$. Given a real number x, how do we find integers $a_{0}, a_{1}, a_{2}, \ldots$ which are positive except possibly a_{0} and such that $x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$? (8 points)
b) Express $\sqrt{15}$ as a simple continued fraction. Explain carefully all details. (8 points)
c) What is the value of $[2,3,1,3,1,3,1, \ldots]=[2, \overline{3,1}]$? Show all necessary work. (8 points)
d) Compute the fifth convergent of the continued fraction $x=[3,1,6,1,6, \ldots]=[3, \overline{1,6}]$. Among all rational numbers whose denominator is at most 63 , which one is closest to x ? (8 points)

Solution. a) $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is defined as the limit

$$
\left[a_{0}, a_{1}, a_{2},, \ldots\right]=\lim _{n \rightarrow \infty}\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

where

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}} .
$$

We proved that under the assumptions (a_{i} are integers and $a_{i}>0$ for $i=1,2 \ldots$) the limit always exists and is an irrational number.

Given x, we define a sequence x_{k} recursively by $x_{0}=x$ and $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}$. When x is irrational this defines an infinite sequence. When x is rational, we get x_{n} to be an integer for some n and then we stop. We have $a_{i}=\left\lfloor x_{i}\right\rfloor$ for $i=0,1, \ldots$.
b) We start with $x_{0}=\sqrt{15}, a_{0}=\left\lfloor x_{0}\right\rfloor=3$. Thus

$$
\begin{gathered}
x_{1}=\frac{1}{\sqrt{15}-3}=\frac{3+\sqrt{15}}{6} \text { and }\left\lfloor x_{1}\right\rfloor=1, \\
x_{2}=\frac{1}{\frac{3+\sqrt{15}}{6}-1}=\frac{6}{\sqrt{15}-3}=\sqrt{15}+3 \text { and }\left\lfloor x_{2}\right\rfloor=6, \\
x_{3}=\frac{1}{(\sqrt{15}+3)-6}=\frac{1}{\sqrt{15}-3}=x_{1} \text { and }\left\lfloor x_{3}\right\rfloor=1 .
\end{gathered}
$$

At this point we see that $x_{3}=x_{1}$, so $x_{4}=x_{2}, x_{5}=x_{3}=x_{1}$, and so on. Thus

$$
\sqrt{15}=[3,1,6,1,6,1,6 \ldots]=[3, \overline{1,6}] .
$$

c) We have $[2, \overline{3,1}]=2+\frac{1}{[3,1]}$. So we first compute the purely periodic part $x=[\overline{3,1}]$:

$$
x=3+\frac{1}{1+\frac{1}{x}}=3+\frac{x}{x+1}=\frac{4 x+3}{x+1} .
$$

Thus $x^{2}+x=4 x+3$ and $x^{2}-3 x-3=0$. It follows that $x=\frac{3 \pm \sqrt{21}}{2}$. Since $x \geq 2$, we have $x=\frac{3+\sqrt{21}}{2}$. Thus

$$
[2, \overline{3,1}]=[2, x]=2+\frac{1}{x}=2+\frac{2}{3+\sqrt{21}}=2+\frac{2(\sqrt{21}-3)}{21-9}=2+\frac{\sqrt{21}-3}{6}=\frac{\sqrt{21}+9}{6} .
$$

c) The k-the convergent of a continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is $\left[a_{0}, a_{1}, \ldots, a_{k}\right]=\frac{p_{k}}{q_{k}}$, where the numbers p_{i}, q_{i} are defined recursively by

$$
p_{n}=a_{n} p_{n-1}+p_{n-2}, p_{-1}=1, p_{0}=a_{0}, \quad \text { and } \quad q_{n}=a_{n} q_{n-1}+q_{n-2}, q_{-1}=0, q_{0}=1
$$

Alternatively, we can use the formula

$$
\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
p_{k} \\
q_{k}
\end{array}\right]
$$

In our case, $x=[3,1,6,1,6,1, \ldots]$. Thus

$$
p_{0}=3, p_{1}=4, p_{2}=27, p_{3}=31, p_{4}=213, p_{5}=244
$$

and

$$
q_{0}=1, q_{1}=1, q_{2}=7, q_{3}=8, q_{4}=55, q_{5}=63
$$

Thus the fifth convergent for x is $\frac{244}{63}$.
We proved that among all fractions with denominator bounded by q_{k}, the closed to x is the k-th convergent. Thus among all fractions whose denominator does not exceed 63, the closest to x is $\frac{244}{63}$.

Problem 2. a) Define the Legendre symbol and the Jacobi symbol. State quadratic reciprocity. (8 points)
b) Is the congruence $x^{2}+10 x+7 \equiv 0(\bmod 2017)$ solvable? Carefully justify your answer. You can use the fact that 2017 is a prime. (8 points)
c) Find all solutions to the congruence $3 x^{2}-2 x-9 \equiv 0(\bmod 19) \cdot(8$ points $)$

Solution. a) An integer a is called a quadratic residue modulo a prime p if $p \nmid a$ and $a \equiv x^{2}(\bmod p)$ for some integer x. An integer a is called a quadratic non-residue modulo a prime p if there is no integer x such that $a \equiv x^{2}(\bmod p)$. When p is an odd prime then we define the Legendre symbol $\left(\frac{a}{p}\right)$ as follows

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue modulo } p \\ -1 & \text { if } a \text { is a quadratic non-residue modulo } p \\ 0 & \text { if } p \mid a\end{cases}
$$

The Jacobi symbol $\left(\frac{a}{m}\right)$ is defined for any integer a and any odd integer m as follows: write $m=p_{1} \ldots p_{s}$ as a product of prime numbers and set

$$
\left(\frac{a}{m}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{s}}\right) .
$$

Qadratic Reciprocity:

1. If p and q are distinct odd prime numbers then
$\left(\frac{q}{p}\right)= \begin{cases}-\left(\frac{p}{q}\right) & \text { if } p \equiv 3 \equiv q(\bmod 4) ; \\ \left(\frac{p}{q}\right) & \text { if at least one of } p, q \text { is } \equiv 1(\bmod 4) .\end{cases}$
Equivalently, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$.
2. $\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,7(\bmod 8) ; \\ -1 & \text { if } p \equiv 3,5(\bmod 8) .\end{cases}$

Equivalently, $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$.
3. $\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1(\bmod 4) ; \\ -1 & \text { if } p \equiv 3(\bmod 4)\end{cases}$

Equivalently, $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$.
Remark. Often by quadratic reciprocity one only means part 1 . The other two parts are simpler and were proved earlier.

Qadratic Reciprocity for Jacobi symbol:

1. If m and n are distinct odd numbers then
$\left(\frac{n}{m}\right)= \begin{cases}-\left(\frac{m}{n}\right) & \text { if } m \equiv 3 \equiv n(\bmod 4) ; \\ \left(\frac{m}{n}\right) & \text { if at least one of } m, n \text { is } \equiv 1(\bmod 4) .\end{cases}$
Equivalently, if m, n are relatively prime, then $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}$.
2. $\left(\frac{2}{m}\right)= \begin{cases}1 & \text { if } m \equiv 1,7(\bmod 8) \text {; } \\ -1 & \text { if } m \equiv 3,5(\bmod 8) \text {. }\end{cases}$

Equivalently, $\left(\frac{2}{m}\right)=(-1)^{\frac{m^{2}-1}{8}}$.
3. $\left(\frac{-1}{m}\right)= \begin{cases}1 & \text { if } m \equiv 1(\bmod 4) ; \\ -1 & \text { if } m \equiv 3(\bmod 4) .\end{cases}$

Equivalently, $\left(\frac{-1}{m}\right)=(-1)^{\frac{m-1}{2}}$.
b) Note that $x^{2}+10 x+7=(x+5)^{2}-18$. Thus our congruence is equivalent to $(x+5)^{2} \equiv$ $18(\bmod 2017)$. This congruence is solvable if and only if 18 is a square modulo 2017 . We have

$$
\left(\frac{18}{2017}\right)=\left(\frac{2}{2017}\right)\left(\frac{9}{2017}\right)=\left(\frac{2}{2017}\right)=1
$$

since $2017 \equiv 1(\bmod 8)$. Thus 18 is indeed a square modulo 2017 and our congruence is solvable

Remark. In general, if p is an odd prime and $p \nmid a$ then a quadratic congruence $a x^{2}+$ $b x+c \equiv 0(\bmod p)$ is solvable if and only if the discriminant $b^{2}-4 a c$ is a square modulo p.
c) The congruence $3 x^{2}-2 x-9 \equiv 0(\bmod 19)$ is equivalent to $3\left(3 x^{2}-2 x-9\right) \equiv$ $0(\bmod 19)$, which is the same as $(3 x-1)^{2} \equiv 28 \equiv 9=3^{2}(\bmod 19)$. It follows that
$3 x-1 \equiv 3(\bmod 19) \quad$ or $3 x-1 \equiv-3(\bmod 19)$. The first congruence has solution $x \equiv 14(\bmod 19)$, the second congruence has solution $x \equiv 12(\bmod 19)$.

Problem 3. a) Define perfect numbers. What can you say about even perfect numbers? (7 points)
b) Prove that if $k>1, m>1$ are integers then $\sigma(k m)>k \sigma(m)$. (7 points)
c) Show that if m, n are perfect numbers and $m \mid n$ then $m=n$. (7 points)

Solution. a) A positive integer n is called perfect if it is equal to the sum of all its proper divisors, i.e. if $\sigma(n)=2 n$, where $\sigma(n)$ is the sum of all positive divisors of n. It was proved by Euclid and Euler that an even number n is perfect if and only if $n=2^{k-1}\left(2^{k}-1\right)$ for some k such that $2^{k}-1$ is a prime number. It is not known if there exists an odd perfect number.
b) Let $d_{1}, d_{2}, \ldots, d_{s}$ be all the positive divisors of m, so $\sigma(m)=d_{1}+\ldots+d_{s}$. Each of the numbers $1, k d_{1}, k d_{2}, \ldots, k d_{s}$ is a positive divisor of $k m$. Thus

$$
\sigma(k m) \geq 1+k d_{1}+k d_{2}+\ldots+k d_{s}=1+k \sigma(m)>k \sigma(m) .
$$

c) Suppose that m is a perfect number and $n=k m$ for $k>1$. Then $\sigma(m)=2 m$ and, by part b), we have

$$
\sigma(n)=\sigma(k m)>k \sigma(m)=2 k m=2 n
$$

so $\operatorname{sigma}(n)>2 n$, i.e. n is not perfect.

Problem 4. a) Define the Möbius function. State the Möbius inversion formula. (8 points)
b) Let $f(n)=\left\{\begin{array}{ll}1 & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even. }\end{array}\right.$ Show that f is multiplicative. (7 points)
c) Let $g=\phi * f$ (here ϕ is the Euler function). Prove that $g(n)= \begin{cases}n & \text { if } n \text { is odd } \\ n / 2 & \text { if } n \text { is even. }\end{cases}$ points)

Solution. a) The Möbius function μ is defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{r} & \text { if } n=p_{1} p_{2} \ldots p_{r} \text { is a product of } r \text { distinct primes } \\ 0 & \text { in all other cases }\end{cases}
$$

It is the convolution inverse of $\mathbb{1}$.
Möbius inversion formula: if $F=f * \mathbb{1}$ then $f=F * \mu$. In other words, if $F(n)=\sum_{d \mid n} f(d)$ for all n, then $f(n)=\sum_{d \mid n} F(d) \mu(n / d)$ for all n.
b) We will show that f is completely multiplicative. If at least one of m, n is even then $f(m) f(n)=0$ an $m n$ is also even, so $0=f(m n)$. Thus $f(m n)=f(m) f(n)$ in this
case. If both m and n are odd then $f(m)=1=f(n)$ and $m n$ is also odd. Thus $1=f(m n)=f(m) f(n)$.
c) Since f and ϕ are both multiplicative, so is $\phi * f$. If $k \geq 1$ then

$$
(\phi * f)\left(2^{k}\right)=\sum_{i=0}^{k} \phi\left(2^{i}\right) f\left(2^{k-i}\right)=\phi\left(2^{k}\right)=2^{k-1}
$$

since $f\left(2^{k-i}\right)=0$ for $i<k$. When m is odd then so is every divisor of m so

$$
(\phi * f)(m)=\sum_{d \mid m} \phi(d) f(m / d)=\sum_{d \mid m} \phi(d)=m
$$

since we proved that $\sum_{d \mid n} \phi(d)=n$ for every n (alternatively, compute $(\phi * f)\left(p^{k}\right)$ of powers of odd primes p and use multiplicativity). This, if n is odd we have $(\phi * f)(n)=n$ and if $n=2^{k} m$ is even, with $k>0$ and m odd we have

$$
(\phi * f)(n)=(\phi * f)\left(2^{k} m\right)=(\phi * f)\left(2^{k}\right)(\phi * f)(m)=2^{k-1} m=n / 2 .
$$

Problem 5. Suppose that $x=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$ and $a_{1}>1$. Show that

$$
-x=\left[-a_{0}-1,1, a_{1}-1, a_{2}, a_{3}, \ldots, a_{n}\right] .
$$

What if $a_{1}=1$?
Solution. Let $z=\left[a_{2}, a_{3}, \ldots, a_{n}\right]$. Then $x=a_{0}+\frac{1}{a_{1}+\frac{1}{z}}$ and

$$
\begin{aligned}
{\left[-a_{0}-1,1, a_{1}-1, a_{2}, a_{3}, \ldots, a_{n}\right] } & =-a_{0}-1+\frac{1}{1+\frac{1}{a_{1}-1+\frac{1}{z}}}=-a_{0}-1+\frac{a_{1}-1+\frac{1}{z}}{a_{1}+\frac{1}{z}}= \\
& =-a_{0}-\frac{1}{a_{1}+\frac{1}{z}}=-x .
\end{aligned}
$$

This computation works when $n \geq 2$, but when $n=1$ we can replace $1 / z$ with 0 and it still works.

When $a_{1}=1$, the above does not work as $a_{1}-1=0$ is not allowed in a continued fraction.
We have $-\left[a_{0}, 1, a_{2}, \ldots, a_{n}\right]=\left[-a_{0}-1,1+a_{2}, a_{3}, \ldots, a_{n}\right]$.

