Homework 1

due on Wednesday, January 24

Read carefully Appendix A and sections 1.1, 1.2 in the book. Read the section about induction in the link on the course web page.. Solve the following problems. Problem 1. Suppose that $a_{1}=2$ and $a_{n+1}=3 a_{n}+2$. Prove that $a_{n}=3^{n}-1$ for every natural number n.

Problem 2. Prove by induction that every natural number is a sum of disctinct powers of 2 (e.g. $1=2^{0} ; 2=2^{1}, 3=2^{0}+2^{1}$, etc.). Hint: In the inductive step consider the case when your number is even and the case when it is odd.

Extra credit: prove that such expression is unique. Hint: Observe that $1+2+$ $4+. .+2^{n}<2^{n+1}$

Problem 3. We defined in class $v(n)$ to be the number of positive divisors of n. Charcterize positive integrs n such that $v(n)=3$.

