Homework 10

due on Wednesday, March 14

Solve the following problems.
Problem 1. Suppose that $m_{1}, m_{2}, \ldots m_{k}$ are positive integers such that a primitive root modulo m_{i} exists for each i. Prove that there is an integer a which is a primitive root modulo m_{i} for every i. Hint: Chinese Remainder Theorem should be useful.

Problem 2. Suppose that $p<q$ are odd prime numbers. Prove that $p q$ is not a Carmicheal number. Hint: use a which is a primitive root modulo both p and q.

Problem 3. Let p be an odd prime number. Suppose a, b, c are integers and $p \nmid a$. Prove that the congruence $a x^{2}+b x+c \equiv 0(\bmod p)$ is solvable if and only if $b^{2}-4 a c$ is either congruent to 0 modulo p or it is a quadratic residue modulo p.

Problem 4. Prove that if a, b, c are non-zero integers then

$$
\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c))=\operatorname{gcd}(a, \operatorname{lcm}(b, c) .
$$

