Homework 10, solutions

Problem 1. Suppose that $m_1, m_2, \ldots m_k$ are positive integers such that a primitive root modulo m_i exists for each *i*. Prove that there is an integer *a* which is a primitive root modulo m_i for every *i*. Hint: Chinese Remainder Theorem should be useful.

Solution. We may assume that $m_1 = 4$ and $m_i = p_i^{k_i}$ or $m_i = 2p_i^{k_i}$ for some odd prime p_i for i > 1.

Recall that we proved that there is is a primitive root b modulo an odd prime p such that $p^2 \nmid (b^{p-1} - 1)$ and any such b is a primitive root modulo p^t for every positive integer t. Replacing b by $b + p^2$ if necessary, we may assume that b is odd and then b is also a primitive root modulo $2p^t$ for very t > 0. Choose any such b and call it a_p .

By the Chinese Remainder Theorem, we can find and integer a such that

$$a \equiv -1 \pmod{4}$$
, and $a \equiv a_{p_i} \pmod{p_i^2}$

for i = 2, 2...k. Then *a* is a primitive root modulo 4, p_i^t , $2p_i^t$ for every t > 0 and i = 2, ...k. Thus *a* has the required proprty.

Problem 2. Suppose that p < q are odd prime numbers. Prove that pq is not a Carmicheal number. Hint: use a which is a primitive root modulo both p and q.

Solution. By the first problem, there is an integer a which is a primitive root modulo p and a primitive root modulo q. In particular, a is relatively prime to pq. Suppose pq is a Carmichael number. Then $a^{pq} \equiv a \pmod{pq}$ and therefore $a^{pq-1} \equiv 1 \pmod{pq}$ (since gcd(a, pq) = 1). We may assume that p < q. Since $a^{pq-1} \equiv 1 \pmod{q}$ and the order of a modulo q is q-1 we have (q-1)|(pq-1). However, pq-1 = p(q-1) + p - 1, so (q-1)|(p-1). This is howver impossible since p < q. The contradiction shows that pq is not a Carmichael number.

Remark. The suggestion in the hint is in fact unnecessary as in the above argument it suffices to choose a which is a primitive root modulo q.

Problem 3. Let p be an odd prime number. Suppose a, b, c are integers and $p \nmid a$. Prove that the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ is solvable if and only if $b^2 - 4ac$ is either congruent to 0 modulo p or it is a quadratic residue modulo p. **Solution.** Since p is odd and $p \nmid a$, we have gcd(p, 4a) = 1. Thus the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ is equivalent to the congruence $4a(ax^2 + bx + c) \equiv 0 \pmod{p}$. Note that

$$4a(ax^{2} + bx + c) = (2ax + b)^{2} - (b^{2} - 4ac)$$

Thus, if x is a solution to our congruence then y = 2ax + b satisfies

$$y^2 \equiv b^2 - 4ac \pmod{p}$$

so $b^2 - 4ac$ is either divisible by p or a quadratic residue modulo p. Conversely, if $b^2 - 4ac$ is either divisible by p or a quadratic residue modulo p then the congruence $y^2 \equiv b^2 - 4ac \pmod{p}$ has a solution y. The congruence $2ax + b \equiv y \pmod{p}$ is also solvable (since gcd(2a, p) = 1)) and any solution x satisfies our original congruence $ax^2 + bx + c \equiv 0 \pmod{p}$.

Problem 4. Prove that if a, b, c are non-zero integers then

$$\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c)) = \operatorname{gcd}(a, \operatorname{lcm}(b, c)).$$

Solution. We will use the following simple fact: if u, w are positive integers then u = w if and only if $e_p(u) = e_p(w)$ for every prime number p. Recall also, that if $e_p(u) = s$ and $e_p(w) = t$ then $e_p(\gcd(u, w)) = \min(s, t)$ and $e_p(\operatorname{lcm}(u, w)) = \max(s, t)$.

Let p be a prime number and let $e_p(a) = \alpha$, $e_p(b) = \beta$, $e_p(c) = \gamma$. We may assume that $\beta \leq \gamma$ (replacing the roles of b and c if necessary).

There are three case to consider:

- 1. case 1. $\alpha < \beta \leq \gamma$
- 2. case 2. $\beta \leq \alpha \leq \gamma$
- 3. case 3 $\beta \leq \gamma < \alpha$.

In case 1 we have $e_p(\operatorname{gcd}(a,b)) = \alpha$, $e_p(\operatorname{gcd}(a,c)) = \alpha$, $e_p(\operatorname{lcm}(b,c)) = \gamma$. Thus

$$e_p(\operatorname{lcm}(\operatorname{gcd}(a,b),\operatorname{gcd}(a,c))) = \alpha$$
, and $e_p(\operatorname{gcd}(a,\operatorname{lcm}(b,c))) = \alpha$

In case 2 we have $e_p(\operatorname{gcd}(a, b)) = \beta$, $e_p(\operatorname{gcd}(a, c)) = \alpha$, $e_p(\operatorname{lcm}(b, c)) = \gamma$. Thus

 $e_p(\operatorname{lcm}(\operatorname{gcd}(a,b),\operatorname{gcd}(a,c)))=\alpha, \text{ and } e_p(\operatorname{gcd}(a,\operatorname{lcm}(b,c)))=\alpha.$

Finally, in case 3 we have $e_p(\gcd(a, b)) = \beta$, $e_p(\gcd(a, c)) = \gamma$, $e_p(\operatorname{lcm}(b, c)) = \gamma$. Thus

$$e_p(\operatorname{lcm}(\operatorname{gcd}(a,b),\operatorname{gcd}(a,c))) = \gamma$$
, and $e_p(\operatorname{gcd}(a,\operatorname{lcm}(b,c))) = \gamma$.

In every case, we have

$$e_p(\operatorname{lcm}(\operatorname{gcd}(a,b),\operatorname{gcd}(a,c))) = e_p(\operatorname{gcd}(a,\operatorname{lcm}(b,c)))$$

and therefore

$$\operatorname{lcm}(\operatorname{gcd}(a,b),\operatorname{gcd}(a,c)) = \operatorname{gcd}(a,\operatorname{lcm}(b,c)).$$