Homework 10, solutions

Problem 1. Suppose that mq, mo, ... my are positive integers such that a primitive
root modulo m; exists for each i. Prove that there is an integer a which is a primitive

root modulo m; for every . Hint: Chinese Remainder Theorem should be useful.

Solution. We may assume that m; = 4 and m; = pf or m; = pri for some odd
prime p; for ¢ > 1.

Recall that we proved that there is is a primitive root b modulo an odd prime
p such that p? { (b1 — 1) and any such b is a primitive root modulo p* for every
positive integer t. Replacing b by b + p? if necessary, we may assume that b is odd
and then b is also a primitive root modulo 2p* for very ¢ > 0. Choose any such b
and call it a,.

By the Chinese Remainder Theorem, we can find and integer a such that
a=-1( mod4), and a = a, ( mod p?)

for i = 2,2...k. Then a is a primitive root modulo 4, p!, 2p! for every ¢ > 0 and

1t =2,...k. Thus a has the required proprty.

Problem 2. Suppose that p < ¢ are odd prime numbers. Prove that pq is not a

Carmicheal number. Hint: use a which is a primitive root modulo both p and q.

Solution. By the first problem, there is an integer a which is a primitive root
modulo p and a primitive root modulo ¢. In particular, a is relatively prime to
pq. Suppose pq is a Carmichael number. Then a?? = a( mod pg) and therefore
a”™! = 1( mod pq) (since ged(a,pq) = 1). We may assume that p < g. Since
a??™' = 1( mod ¢) and the order of a modulo ¢ is ¢ — 1 we have (¢ — 1)|(pqg — 1).
However, pg — 1 =p(¢—1)+p—1, so (¢ — 1)|(p — 1). This is howver impossible

since p < q. The contradiction shows that pg is not a Carmichael number.

Remark. The suggestion in the hint is in fact unnecessary as in the above argument

it suffices to choose a which is a primitive root modulo q.
Problem 3. Let p be an odd prime number. Suppose a, b, ¢ are integers and p 1 a.
Prove that the congruence ax?+bz+c = 0( mod p) is solvable if and only if b* —4ac

is either congruent to 0 modulo p or it is a quadratic residue modulo p.



Solution. Since p is odd and p 1 a, we have ged(p,4a) = 1. Thus the congruence
ar? + bxr + ¢ = 0( mod p) is equivalent to the congruence

4a(az® + bx + ¢) = 0( mod p). Note that
4a(ar® + bz + ) = (2az + b)* — (b* — 4ac)
Thus, if  is a solution to our congruence then y = 2ax + b satisfies
y® = b® — 4ac( mod p)

so b?> — 4ac is either divisible by p or a quadratic residue modulo p. Conversely, if
b? — 4ac is either divisible by p or a quadratic residue modulo p then the congruence
y?> = b*—4ac( mod p) has a solution y. The congruence 2ax+b = y( mod p) is also
solvable (since ged(2a,p) = 1)) and any solution x satisfies our original congruence

az? +bx +c=0( mod p).

Problem 4. Prove that if a, b, ¢ are non-zero integers then

lem(ged(a, b), ged(a, ¢)) = ged(a, lem(b, ¢)).

Solution. We will use the following simple fact: if u,w are positive integers then
u = w if and only if e,(u) = e,(w) for every prime number p. Recall also, that
if e,(u) = s and ey(w) = t then ey(ged(u,w)) = min(s,t) and e,(lem(u,w)) =

max(s,t).

Let p be a prime number and let e,(a) = a, e,(b) = [, e,(c) = 7. We may assume
that 5 < (replacing the roles of b and c¢ if necessary).

There are three case to consider:

l.case 1. a < B <7
2. case 2. f<a<y
3.case 3 < v <a.
In case 1 we have e,(ged(a, b)) = o, e,(ged(a, ¢)) = a, e,(lem(b, ¢)) = ~. Thus

ep(lem(ged(a, b), ged(a, ¢))) = a, and e,(ged(a, lem(b, ¢))) = a.



In case 2 we have e,(ged(a, b)) = 3, e,(ged(a, ¢)) = a, e,(lem(b, ¢)) = ~. Thus
ep(lem(ged(a, b), ged(a, ¢))) = a, and e,(ged(a, lem(b, ¢))) = a.

Finally, in case 3 we have e,(gcd(a, b)) = 5, e,(ged(a, ) =7, ey(lem(b, ¢)) = 7.
Thus
ep(lcm(gcd(a, b)7 ng((I, C))) =7 and €P<ng(a'7 lcm(bv C))) =7

In every case, we have

e,(lem(ged(a, b), ged(a, ¢))) = ey(ged(a, lem(b, ¢)))

and therefore
lem(ged(a, b), ged(a, ¢)) = ged(a, lem(b, ¢)).



