
Homework 10, solutions

Problem 1. Suppose that m1, m2, . . . mk are positive integers such that a primitive

root modulo mi exists for each i. Prove that there is an integer a which is a primitive

root modulo mi for every i. Hint: Chinese Remainder Theorem should be useful.

Solution. We may assume that m1 = 4 and mi = pki

i or mi = 2pki

i for some odd

prime pi for i > 1.

Recall that we proved that there is is a primitive root b modulo an odd prime

p such that p2 ∤ (bp−1 − 1) and any such b is a primitive root modulo pt for every

positive integer t. Replacing b by b + p2 if necessary, we may assume that b is odd

and then b is also a primitive root modulo 2pt for very t > 0. Choose any such b

and call it ap.

By the Chinese Remainder Theorem, we can find and integer a such that

a ≡ −1( mod 4), and a ≡ api
( mod p2

i )

for i = 2, 2 . . . k. Then a is a primitive root modulo 4, pt
i, 2pt

i for every t > 0 and

i = 2, . . . k. Thus a has the required proprty.

Problem 2. Suppose that p < q are odd prime numbers. Prove that pq is not a

Carmicheal number. Hint: use a which is a primitive root modulo both p and q.

Solution. By the first problem, there is an integer a which is a primitive root

modulo p and a primitive root modulo q. In particular, a is relatively prime to

pq. Suppose pq is a Carmichael number. Then apq ≡ a( mod pq) and therefore

apq−1 ≡ 1( mod pq) (since gcd(a, pq) = 1). We may assume that p < q. Since

apq−1 ≡ 1( mod q) and the order of a modulo q is q − 1 we have (q − 1)|(pq − 1).

However, pq − 1 = p(q − 1) + p − 1, so (q − 1)|(p − 1). This is howver impossible

since p < q. The contradiction shows that pq is not a Carmichael number.

Remark. The suggestion in the hint is in fact unnecessary as in the above argument

it suffices to choose a which is a primitive root modulo q.

Problem 3. Let p be an odd prime number. Suppose a, b, c are integers and p ∤ a.

Prove that the congruence ax2 +bx+c ≡ 0( mod p) is solvable if and only if b2 −4ac

is either congruent to 0 modulo p or it is a quadratic residue modulo p.
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Solution. Since p is odd and p ∤ a, we have gcd(p, 4a) = 1. Thus the congruence

ax2 + bx + c ≡ 0( mod p) is equivalent to the congruence

4a(ax2 + bx + c) ≡ 0( mod p). Note that

4a(ax2 + bx + c) = (2ax + b)2 − (b2 − 4ac)

Thus, if x is a solution to our congruence then y = 2ax + b satisfies

y2 ≡ b2 − 4ac( mod p)

so b2 − 4ac is either divisible by p or a quadratic residue modulo p. Conversely, if

b2 − 4ac is either divisible by p or a quadratic residue modulo p then the congruence

y2 ≡ b2−4ac( mod p) has a solution y. The congruence 2ax+b ≡ y( mod p) is also

solvable (since gcd(2a, p) = 1)) and any solution x satisfies our original congruence

ax2 + bx + c ≡ 0( mod p).

Problem 4. Prove that if a, b, c are non-zero integers then

lcm(gcd(a, b), gcd(a, c)) = gcd(a, lcm(b, c)).

Solution. We will use the following simple fact: if u, w are positive integers then

u = w if and only if ep(u) = ep(w) for every prime number p. Recall also, that

if ep(u) = s and ep(w) = t then ep(gcd(u, w)) = min(s, t) and ep(lcm(u, w)) =

max(s, t).

Let p be a prime number and let ep(a) = α, ep(b) = β, ep(c) = γ. We may assume

that β ≤ γ (replacing the roles of b and c if necessary).

There are three case to consider:

1. case 1. α < β ≤ γ

2. case 2. β ≤ α ≤ γ

3. case 3 β ≤ γ < α.

In case 1 we have ep(gcd(a, b)) = α, ep(gcd(a, c)) = α, ep(lcm(b, c)) = γ. Thus

ep(lcm(gcd(a, b), gcd(a, c))) = α, and ep(gcd(a, lcm(b, c))) = α.
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In case 2 we have ep(gcd(a, b)) = β, ep(gcd(a, c)) = α, ep(lcm(b, c)) = γ. Thus

ep(lcm(gcd(a, b), gcd(a, c))) = α, and ep(gcd(a, lcm(b, c))) = α.

Finally, in case 3 we have ep(gcd(a, b)) = β, ep(gcd(a, c)) = γ, ep(lcm(b, c)) = γ.

Thus

ep(lcm(gcd(a, b), gcd(a, c))) = γ, and ep(gcd(a, lcm(b, c))) = γ.

In every case, we have

ep(lcm(gcd(a, b), gcd(a, c))) = ep(gcd(a, lcm(b, c)))

and therefore

lcm(gcd(a, b), gcd(a, c)) = gcd(a, lcm(b, c)).
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