Homework 10, solutions

Problem 1. Suppose that $m_{1}, m_{2}, \ldots m_{k}$ are positive integers such that a primitive root modulo m_{i} exists for each i. Prove that there is an integer a which is a primitive root modulo m_{i} for every i. Hint: Chinese Remainder Theorem should be useful.

Solution. We may assume that $m_{1}=4$ and $m_{i}=p_{i}^{k_{i}}$ or $m_{i}=2 p_{i}^{k_{i}}$ for some odd prime p_{i} for $i>1$.

Recall that we proved that there is is a primitive root b modulo an odd prime p such that $p^{2} \nmid\left(b^{p-1}-1\right)$ and any such b is a primitive root modulo p^{t} for every positive integer t. Replacing b by $b+p^{2}$ if necessary, we may assume that b is odd and then b is also a primitive root modulo $2 p^{t}$ for very $t>0$. Choose any such b and call it a_{p}.

By the Chinese Remainder Theorem, we can find and integer a such that

$$
a \equiv-1(\bmod 4), \text { and } a \equiv a_{p_{i}}\left(\bmod p_{i}^{2}\right)
$$

for $i=2,2 \ldots k$. Then a is a primitive root modulo $4, p_{i}^{t}, 2 p_{i}^{t}$ for every $t>0$ and $i=2, \ldots k$. Thus a has the required proprty.

Problem 2. Suppose that $p<q$ are odd prime numbers. Prove that $p q$ is not a Carmicheal number. Hint: use a which is a primitive root modulo both p and q.

Solution. By the first problem, there is an integer a which is a primitive root modulo p and a primitive root modulo q. In particular, a is relatively prime to $p q$. Suppose $p q$ is a Carmichael number. Then $a^{p q} \equiv a(\bmod p q)$ and therefore $a^{p q-1} \equiv 1(\bmod p q)($ since $\operatorname{gcd}(a, p q)=1)$. We may assume that $p<q$. Since $a^{p q-1} \equiv 1(\bmod q)$ and the order of a modulo q is $q-1$ we have $(q-1) \mid(p q-1)$. However, $p q-1=p(q-1)+p-1$, so $(q-1) \mid(p-1)$. This is howver impossible since $p<q$. The contradiction shows that $p q$ is not a Carmichael number.

Remark. The suggestion in the hint is in fact unnecessary as in the above argument it suffices to choose a which is a primitive root modulo q.

Problem 3. Let p be an odd prime number. Suppose a, b, c are integers and $p \nmid a$. Prove that the congruence $a x^{2}+b x+c \equiv 0(\bmod p)$ is solvable if and only if $b^{2}-4 a c$ is either congruent to 0 modulo p or it is a quadratic residue modulo p.

Solution. Since p is odd and $p \nmid a$, we have $\operatorname{gcd}(p, 4 a)=1$. Thus the congruence $a x^{2}+b x+c \equiv 0(\bmod p)$ is equivalent to the congruence $4 a\left(a x^{2}+b x+c\right) \equiv 0(\bmod p)$. Note that

$$
4 a\left(a x^{2}+b x+c\right)=(2 a x+b)^{2}-\left(b^{2}-4 a c\right)
$$

Thus, if x is a solution to our congruence then $y=2 a x+b$ satisfies

$$
y^{2} \equiv b^{2}-4 a c(\quad \bmod p)
$$

so $b^{2}-4 a c$ is either divisible by p or a quadratic residue modulo p. Conversely, if $b^{2}-4 a c$ is either divisible by p or a quadratic residue modulo p then the congruence $y^{2} \equiv b^{2}-4 a c(\bmod p)$ has a solution y. The congruence $2 a x+b \equiv y(\bmod p)$ is also solvable $(\operatorname{since} \operatorname{gcd}(2 a, p)=1))$ and any solution x satisfies our original congruence $a x^{2}+b x+c \equiv 0(\bmod p)$.

Problem 4. Prove that if a, b, c are non-zero integers then

$$
\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c))=\operatorname{gcd}(a, \operatorname{lcm}(b, c))
$$

Solution. We will use the following simple fact: if u, w are positive integers then $u=w$ if and only if $e_{p}(u)=e_{p}(w)$ for every prime number p. Recall also, that if $e_{p}(u)=s$ and $e_{p}(w)=t$ then $e_{p}(\operatorname{gcd}(u, w))=\min (s, t)$ and $e_{p}(\operatorname{lcm}(u, w))=$ $\max (s, t)$.

Let p be a prime number and let $e_{p}(a)=\alpha, e_{p}(b)=\beta, e_{p}(c)=\gamma$. We may assume that $\beta \leq \gamma$ (replacing the roles of b and c if necessary).

There are three case to consider:

1. case 1. $\alpha<\beta \leq \gamma$
2. case 2. $\beta \leq \alpha \leq \gamma$
3. case $3 \beta \leq \gamma<\alpha$.

In case 1 we have $e_{p}(\operatorname{gcd}(a, b))=\alpha, e_{p}(\operatorname{gcd}(a, c))=\alpha, e_{p}(\operatorname{lcm}(b, c))=\gamma$. Thus

$$
e_{p}(\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c)))=\alpha, \text { and } e_{p}(\operatorname{gcd}(a, \operatorname{lcm}(b, c)))=\alpha
$$

In case 2 we have $e_{p}(\operatorname{gcd}(a, b))=\beta, e_{p}(\operatorname{gcd}(a, c))=\alpha, e_{p}(\operatorname{lcm}(b, c))=\gamma$. Thus

$$
e_{p}(\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c)))=\alpha, \text { and } e_{p}(\operatorname{gcd}(a, \operatorname{lcm}(b, c)))=\alpha
$$

Finally, in case 3 we have $e_{p}(\operatorname{gcd}(a, b))=\beta, e_{p}(\operatorname{gcd}(a, c))=\gamma, e_{p}(\operatorname{lcm}(b, c))=\gamma$. Thus

$$
e_{p}(\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c)))=\gamma, \text { and } e_{p}(\operatorname{gcd}(a, \operatorname{lcm}(b, c)))=\gamma
$$

In every case, we have

$$
e_{p}(\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c)))=e_{p}(\operatorname{gcd}(a, \operatorname{lcm}(b, c)))
$$

and therefore

$$
\operatorname{lcm}(\operatorname{gcd}(a, b), \operatorname{gcd}(a, c))=\operatorname{gcd}(a, \operatorname{lcm}(b, c))
$$

