Homework 11, solutions

Solution to Problem 7. $p>3$ is a prime. Let g be a primitive root modulo p. Then $1, g^{2}, g^{4}, \ldots, g^{p-3}$ are the quadratic residues modulo p and $g, g^{3}, \ldots, g^{p-2}$ are the quadratic non-residues modulo p.
a) Let S be the sum of all the quadratic residues modulo p. Thus

$$
S \equiv 1+g^{2}+\ldots g^{p-3}=1+g^{2}+\left(g^{2}\right)^{2}+\ldots+\left(g^{2}\right)^{(p-3) / 2}(\bmod p)
$$

Multiplying by $g^{2}-1$ we get

$$
\left(g^{2}-1\right) S \equiv\left(g^{2}-1\right)\left(1+g^{2}+\left(g^{2}\right)^{2}+\ldots+\left(g^{2}\right)^{(p-3) / 2}\right)=\left(g^{2}\right)^{1+\frac{p-3}{2}}-1=g^{p-1}-1 \equiv 0(\bmod p) .
$$

Since $p>3$, we have $g^{2}-1 \not \equiv 0(\bmod p)$, and hence $S \equiv 0(\bmod p)$.
Second method. The quadratic residues modulo p are exactly the numbers $1^{2}, 2^{2}, \ldots,((p-1) / 2)^{2}$. Thus

$$
S \equiv 1^{2}+2^{2}+\ldots+((p-1) / 2)^{2}(\bmod p)
$$

Recall now that $1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$. Thus

$$
\left.S \equiv \frac{1}{6} \frac{p-1}{2}\left(\frac{p-1}{2}+1\right)\left(2 \frac{p-1}{2}+1\right)\right)=(p-1)(p+1) p / 24 \equiv 0(\bmod p)
$$

(we us the fact that p is relatively prime to 24).
b) Let T be the sum of squares of all quadratic non-residues. Then

$$
T \equiv g^{2}+\left(g^{3}\right)^{2}+\ldots\left(g^{p-2}\right)^{2}=g^{2}\left(1+g^{4}+\left(g^{4}\right)^{2}+\ldots+\left(g^{4}\right)^{(p-3) / 2}\right)(\bmod p)
$$

Multiplying by $g^{4}-1$, we get
$\left(g^{4}-1\right) T \equiv g^{2}\left(g^{4}-1\right)\left(1+g^{4}+\left(g^{4}\right)^{2}+\ldots+\left(g^{4}\right)^{(p-3) / 2}\right)=g^{2}\left(\left(g^{4}\right)^{(p-1) / 2}-1\right)=g^{2}\left(\left(g^{2}\right)^{p-1}-1\right) \equiv 0(\bmod p)$.
Since $p>5$, we have $g^{4}-1 \not \equiv 0(\bmod p)$, hence $T \equiv 0(\bmod p)$.
Second method. Let $t=(p-1) / 2$ and let s_{1}, \ldots, s_{t} be the quadratic non-sesidues modulo p. Then, for any a, the numbers $a^{2} s_{1}, a^{2} s_{2}, \ldots, a^{2} s_{t}$ are also the quadratic non-residues modulo p (these numbers are pairwise incongruent modulo p, they are
non-squares modulo p and we have t of them, so we get all the quadratic non-residues modulo p). It follows that

$$
T \equiv s_{1}^{2}+\ldots+s_{t}^{2} \equiv\left(a^{2} s_{1}\right)^{2}+\ldots+\left(a^{2} s_{t}\right)^{2} \equiv a^{4} T(\bmod p)
$$

Thus p divides $\left(a^{4}-1\right) T$. Taking $a=2$ we get $p \mid 15 T$. Since $p>5$, we have $\operatorname{gcd}(15, p)=1$, so $p \mid T$.

Solution to Problem 8. Let g be a primitive root modulo p. Then $1, g^{2}, g^{4}, \ldots, g^{p-3}$ are the quadratic residues modulo p. Let P be the product of all quadratic residues modulo p. Thus

$$
P \equiv 1 \cdot g^{2} \cdot \ldots \cdot g^{p-3}=g^{0+2+4+\ldots+(p-3)}=g^{2(1+2+\ldots+(p-3) / 2)}=g^{(p-3)(p-1) / 4}(\bmod p) .
$$

Recall now that $g^{(p-1) / 2} \equiv-1(\bmod p)$. It follows that

$$
P \equiv(-1)^{(p-3) / 2}=(-1)^{(p+1) / 2}(\bmod p)
$$

Consequently, $P \equiv 1(\bmod p)$ if and only if $p \equiv 3(\bmod 4)$.
Second method. The quadratic residues modulo p are exactly the numbers $1^{2}, 2^{2}, \ldots,((p-$ 1) $/ 2)^{2}$. Thus

$$
P \equiv\left[\left(\frac{p-1}{2}\right)!\right]^{2}
$$

In homework 6 (problem 47a) from chapter 2 in the book) we proved that

$$
\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv(-1)^{(p+1) / 2}(\bmod p)
$$

so the result follows.
Solution to problem 10. a) Multiplying both sides by 4 we get

$$
4 x^{2}+4 x \equiv 12 \equiv-1(\bmod 13), \text { i.e. }(2 x+1)^{2} \equiv 0(\bmod 13)
$$

It follows that $2 x+1 \equiv 0(\bmod 13)$, i.e. $x \equiv 6(\bmod 13)$.
b) We have $d=4+48=52 \equiv 1(\bmod 17)$, so $d=1^{2}$ is a square modulo 17 . Completing to squares we get $(6 x+2)^{2} \equiv 1(\bmod 17)$, so $6 x+2 \equiv 1(\bmod 17)$ or $6 x+2 \equiv-1(\bmod 17)$. The first congruence yields $x \equiv 14(\bmod 17)$, the second $x \equiv 8(\bmod 17)$.
c) We have $d=9+4=13(\bmod 19)$. Now

$$
\left(\frac{13}{19}\right)=\left(\frac{19}{13}\right)=\left(\frac{6}{13}\right)=\left(\frac{2}{13}\right)\left(\frac{3}{13}\right)=(-1) \cdot\left(\frac{13}{3}\right)=-\left(\frac{1}{3}\right)=-1
$$

Thus d is not a square modulo 19 and therefore the congruence has no solutions.
d) We have $d=1+40=41 \equiv-5(\bmod 23)$. Now

$$
\left(\frac{-5}{23}\right)=\left(\frac{-1}{23}\right)\left(\frac{5}{23}\right)=(-1) \cdot\left(\frac{23}{5}\right)=-\left(\frac{3}{5}\right)=-\left(\frac{5}{3}\right)=-\left(\frac{2}{3}\right)=-(-1)=1
$$

Thus d is a square modulo 23 and therefore the congruence has solutions.
We have $41 \equiv 18 \equiv 2 \cdot 9 \equiv 25 \cdot 9=15^{2}(\bmod 23)$. Now our congruence

$$
2 x^{2}+x-5 \equiv 0(\bmod 23)
$$

is equivalent to

$$
16 x^{2}+8 x+1-41 \equiv(4 x+1)^{2}-15^{2} \equiv 0(\bmod 23) .
$$

Thus either $4 x+1 \equiv 15(\bmod 23)$ or $4 x+1 \equiv-15(\bmod 23)$. The first case yields $x \equiv 15(\bmod 23)$, the second case yields $x \equiv-4 \equiv 19(\bmod 23)$.

Solution to problem 22. Note that

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0
$$

as we have $(p-1) / 2$ quadratic recidues and $(p-1) / 2$ quadratic non-recidues so the sum has $(p-1) / 2$ terms equal to 1 and $(p-1) / 2$ terms equal to -1 . We can write the above sum as

$$
\begin{gathered}
0=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=\sum_{a=1}^{\frac{p-1}{2}}\left(\left(\frac{a}{p}\right)+\left(\frac{p-a}{p}\right)\right)=\sum_{a=1}^{\frac{p-1}{2}}\left(\left(\frac{a}{p}\right)+\left(\frac{-a}{p}\right)\right)= \\
=\sum_{a=1}^{\frac{p-1}{2}}\left(1+\left(\frac{-1}{p}\right)\right)\left(\frac{a}{p}\right)=\left(1+\left(\frac{-1}{p}\right)\right) \sum_{a=1}^{\frac{p-1}{2}}\left(\frac{a}{p}\right) .
\end{gathered}
$$

When $p \equiv 1(\bmod 4)$, we have $\left(\frac{-1}{p}\right)=1$ and therefore

$$
0=2 \sum_{a=1}^{\frac{p-1}{2}}\left(\frac{a}{p}\right) \text {, i.e. } \sum_{a=1}^{\frac{p-1}{2}}\left(\frac{a}{p}\right)=0 .
$$

Solution to problem 24. Note that

$$
\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)=\left(\frac{10}{p}\right)
$$

Since the Legendre symbols are ± 1, this is the same as

$$
\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)\left(\frac{10}{p}\right)=1
$$

It follows that either exactly one or all three of the Legendre symbols must be 1 . This proves part a) and shows that the answer to part b) is "no".
c) Note that $1,4,9$ are sqaures, hence quadratic residues modulo p. It follows from a) that either 1,2 , or 4,5 , or 9,10 are consecutive quadratic residues modulo p.

Solution to problem 27. Suppose p is a prime such that $p \equiv 3(\bmod 4)$ and $q=2 p+1$ is also a prime. If $p=3$ then clearly $2^{p}-1=7$ is a Mersenne prime. Conversely, suppose that $2^{p}-1$ is a prime. Note that $2 p \equiv 6(\bmod 8)$, so $q=2 p+1 \equiv 7(\bmod 8)$. It follows from the quadratic reciprocity that $\left(\frac{2}{q}\right)=1$. Thus $2^{p}=2^{(q-1) / 2} \equiv 1(\bmod q)$. In other words, q divides $2^{p}-1$. Since $2^{p}-1$ is a prime, we have $q=2^{p}-1$. In other words, $2 p+1=2^{p}-1$. This means that $p=2^{p-1}-1$. As the left hand side is a prime, we have $p-1$ is a prime which can happen only if $p=3$.

Remark. It is not hard to prove that $2^{x}>2 x+2$ for $x>3$.
Solution to problem 33. Note that 107 is a prime number. We have

$$
\left(\frac{71}{107}\right)=-\left(\frac{107}{71}\right)=-\left(\frac{36}{71}\right)=-\left(\frac{6^{2}}{71}\right)=-1 .
$$

Thus 71 is not a quadratic residue modulo 107 , hence there is no integer n such that $n^{2}-71$ is divisible by 107 .

Solution to problem 34. Since $p \equiv q(\bmod 4), p$ and q are either both \equiv $1(\bmod 4)$ or both $\equiv 3(\bmod 4)$. Note that

$$
\left(\frac{a}{q}\right)=\left(\frac{4 a}{q}\right)=\left(\frac{4 a+q}{q}\right)=\left(\frac{p}{q}\right) .
$$

Similarly,

$$
\left(\frac{a}{p}\right)=\left(\frac{4 a}{p}\right)=\left(\frac{4 a-p}{p}\right)=\left(\frac{-q}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) .
$$

Using quadratic reciprocity, we have

$$
\left(\frac{a}{p}\right)=(-1)^{(p-1) / 2}(-1)^{(p-1)(q-1) / 4}\left(\frac{p}{q}\right)=(-1)^{(p-1)(q+1) / 4}\left(\frac{a}{q}\right) .
$$

It is eqsy to see that $(-1)^{(p-1)(q+1) / 4}=1$ when p and q are either both $\equiv 1(\bmod 4)$ or both $\equiv 3(\bmod 4)$. Thus indeed

$$
\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right) .
$$

