## Homework 12, solutions

Solution to Problem 4. a) Let $p(n)$ be the number of distinct prime divisors of $n$. Clearly, if $m, n$ are relatively prime, then they do not share any prime divisors. Thus $p(m n)=p(m)+p(n)$. The function $\rho$ is defined by $\rho(n)=2^{p(n)}$. Thus, for $m, n$ relatively prime we have

$$
\rho(m n)=2^{p(m n)}=2^{p(m)+p(n)}=2^{p(n)} 2^{p(m)}=\rho(m) \rho(n)
$$

which shows that $\rho$ is multiplicative. If $p$ is a prime number, then $\rho(p)=2=\rho\left(p^{2}\right)$. This shows that $\rho$ is not completely multiplicative, as $\rho\left(p^{2}\right)$ is not equal to $\rho(p)^{2}$.
b) We have $f=\rho * \mathbb{1}$. Thus $f$ is multiplicative, beeing a convolution of two multiplicative functions. For any prime $p$ and $k>0$ we have $\rho\left(p^{k}\right)=2$. Thus,

$$
f\left(p^{k}\right)=\sum_{i=0}^{k} \rho\left(p^{i}\right)=1+2 k .
$$

It follows that

$$
f\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}\right)=\left(1+2 a_{1}\right)\left(1+2 a_{2}\right) \ldots\left(1+2 a_{m}\right) .
$$

Solution to Problem 7. a) Clerly if $m$ is a product of $k$ prime numbers and $n$ is a product of $l$ prime numbers then $m n$ is a product of $k+l$ prime numbers. Thus

$$
\lambda(m n)=(-1)^{k+l}=(-1)^{k}(-1)^{l}=\lambda(m) \lambda(n)
$$

so $\lambda$ is completely multiplicative.
b) We have $F=\lambda * \mathbb{1}$. Thus $F$ is multiplicative. For a prime power $p^{k}$ we have $\lambda\left(p^{k}\right)=(-1)^{k}$. Thus

$$
F\left(p^{k}\right)=\sum_{i=0}^{k} \lambda\left(p^{i}\right)=\sum_{i=0}^{k}(-1)^{i}= \begin{cases}1 & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

It follows that $F\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}\right)=1$ if all the exponents $a_{i}$ are even and $F\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}\right)=$ 0 otherwise. In other words, $F(n)=1$ when $n$ is a square and $F(n)=0$ otherwise.

Solution to Problem 20. a) Let $p$ be a prime number. If $p \nmid m$ then $\operatorname{gcd}(p, m)=1$ so $\phi(p m)=\phi(p) \phi(m)=(p-1) \phi(m)$. If $p \mid m$ then $m=p^{s} k$ for some $s>0$ and $k$ such
that $p \nmid k$. Thus $\phi(m)=\phi\left(p^{s}\right) \phi(k)=p^{s-1}(p-1) \phi(k)$ and $\phi(p m)=\phi\left(p^{s+1}\right) \phi(k)=$ $p^{s}(p-1) \phi(k)$. It follows that $\phi(p m)=p \phi(m)$ in this case.

We see that $\phi(m) \mid \phi(p m)$ for any prime number $p$ and any positive integer $m$. Now if $m \mid n$ then $n=p_{1} p_{2} \ldots p_{t} m$ for some prime numbers $p_{1}, \ldots, p_{t}$. Thus,

$$
\phi(m)\left|\phi\left(p_{1} m\right)\right| \phi\left(p_{1} p_{2} m\right)|\ldots| \phi\left(p_{1} p_{2} \ldots p_{t} m\right)=\phi(n)
$$

i.e. $\phi(m) \mid \phi(n)$.
b) The converse of part a) is false. For example, $\phi(4)=2, \phi(5)=4$ so $\phi(4) \mid \phi(5)$ but clearly $4 \nmid 5$.

Solution to Problem 21. a) We have seen in the solution to problem 20a) that if $p$ is a prime and $p \mid n$ then $\phi(p n)=p \phi(n)$.

Let $m=p_{1} p_{2} \ldots p_{t}$. Since $m \mid n$, each prime $p_{i}$ divides $n$. Thus
$\phi(m n)=\phi\left(p_{1} p_{2} \ldots p_{t} n\right)=p_{1} \phi\left(p_{2} \ldots p_{t} n\right)=p_{1} p_{2} \phi\left(p_{3} \ldots p_{t} n\right)=\ldots=p_{1} p_{2} \ldots p_{t} \phi(n)=m \phi(n)$.

Remark. We proved a stronger result, namely that if every prime divisor of $m$ divides $n$ then $\phi(m n)=m \phi(n)$.
b) The convesre to part a) is false. Indeed, $\phi(4 \cdot 6)=8=4 \phi(6)$ but $4 \nmid 6$.

Remark. However, the converse to the stronger result in the remark above is true: if $\phi(m n)=m \phi(n)$ then evry prime divisor of $m$ divides $n$.

Solution to Problem 28. Consider the set $S=\{1,2, \ldots, n\}$. For $d \mid n$, let $S_{d}$ be the subset of $S$ consisting of those integers $m$ such that $\operatorname{gcd}(m, n)=\frac{n}{d}$. If $m \in S_{d}$ then $m=\frac{n}{d} a$ for some $a$ such that $1 \leq a \leq d$ and $\operatorname{gcd}(a, d)=1$. Conversely, if $1 \leq a \leq d$ and $\operatorname{gcd}(a, d)=1$ then $a \frac{n}{d} \in S_{d}$. It follows that

$$
\sum_{m \in S_{d}} m^{k}=\sum_{1 \leq a \leq d, \operatorname{gcd}(a, d)=1}\left(a \frac{n}{d}\right)^{k}=n^{k} \frac{\phi_{k}(d)}{d^{k}} .
$$

Clearly, every element of $S$ belongs to exactly one of the subsets $S_{d}$. Thus

$$
1^{k}+2^{k}+\ldots+n^{k}=\sum_{d \mid n}\left(\sum_{m \in S_{d}} m^{k}\right)=\sum_{d \mid n} n^{k} \frac{\phi_{k}(d)}{d^{k}}=n^{k} \sum_{d \mid n} \frac{\phi_{k}(d)}{d^{k}} .
$$

Solution to Problem 40. The problem asks as to prove that $(\nu * \mathbb{1}(n))^{2}=$ $\left(\nu^{3} * \mathbb{1}\right)(n)$ for every $n$. As $\nu$ is multipliacative, so are $\nu^{3},(\nu * \mathbb{1})^{2}$, and $\nu^{3} * \mathbb{1}$. It suffices then to show that $\left(\nu * \mathbb{1}\left(p^{k}\right)\right)^{2}=\left(\nu^{3} * \mathbb{1}\right)\left(p^{k}\right)$ for every prime power $p^{k}$. Now

$$
(\nu * \mathbb{1})\left(p^{k}\right)=\sum_{i=0}^{k} \nu\left(p^{i}\right)=\sum_{i=0}^{k}(i+1)=\frac{(k+1)(k+2)}{2}
$$

and

$$
\left(\nu^{3} * \mathbb{1}\right)\left(p^{k}\right)=\sum_{i=0}^{k} \nu^{3}\left(p^{i}\right)=\sum_{i=0}^{k}(i+1)^{3} .
$$

It suffices then to prove that for every positive integer $n$ we have

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

This can be done, for example, by induction: if

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

then

$$
\begin{gathered}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=(n+1)^{2}\left(\frac{n^{2}}{4}+n+1\right)= \\
=(n+1)^{2} \frac{(n+2)^{2}}{4}==\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{gathered}
$$

Solution to Problem 51. a)

$$
\begin{gathered}
\sigma_{3}(12)=1^{3}+2^{3}+3^{3}+4^{3}+6^{3}+12^{3}=2044 \\
\sigma_{4}(8)=1^{4}+2^{4}+4^{4}+8^{4}=4361
\end{gathered}
$$

b) Let $f_{k}(n)=n^{k}$. Then $f_{k}$ is multiplicative (even completely multiplicative) and $\sigma_{k}=f_{k} * \mathbb{1}$. It follows that $\sigma_{k}$ is multiplicative.
c) Now

$$
\sigma_{k}\left(p^{a}\right)=\sum_{i=0}^{a} p^{i k}=\sum_{i=0}^{a}\left(p^{k}\right)^{i}=\frac{p^{k(a+1)}-1}{p^{k}-1} .
$$

d) Since $\sigma_{k}$ is multiplicative, part c) yields

$$
\sigma_{k}\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}\right)=\frac{p_{1}^{k\left(a_{1}+1\right)}-1}{p_{1}^{k}-1} \frac{p_{2}^{k\left(a_{2}+1\right)}-1}{p_{2}^{k}-1} \ldots \frac{p_{r}^{k\left(a_{r}+1\right)}-1}{p_{r}^{k}-1} .
$$

