
Homework 12, solutions

Solution to Problem 4. a) Let p(n) be the number of distinct prime divisors of

n. Clearly, if m, n are relatively prime, then they do not share any prime divisors.

Thus p(mn) = p(m) + p(n). The function ρ is defined by ρ(n) = 2p(n). Thus, for

m, n relatively prime we have

ρ(mn) = 2p(mn) = 2p(m)+p(n) = 2p(n)2p(m) = ρ(m)ρ(n)

which shows that ρ is multiplicative. If p is a prime number, then ρ(p) = 2 = ρ(p2).

This shows that ρ is not completely multiplicative, as ρ(p2) is not equal to ρ(p)2.

b) We have f = ρ ∗ 1. Thus f is multiplicative, beeing a convolution of two multi-

plicative functions. For any prime p and k > 0 we have ρ(pk) = 2. Thus,

f(pk) =
k
∑

i=0

ρ(pi) = 1 + 2k.

It follows that

f(pa1

1 pa2

2 . . . pam

m ) = (1 + 2a1)(1 + 2a2) . . . (1 + 2am).

Solution to Problem 7. a) Clerly if m is a product of k prime numbers and n is

a product of l prime numbers then mn is a product of k + l prime numbers. Thus

λ(mn) = (−1)k+l = (−1)k(−1)l = λ(m)λ(n)

so λ is completely multiplicative.

b) We have F = λ ∗ 1. Thus F is multiplicative. For a prime power pk we have

λ(pk) = (−1)k. Thus

F (pk) =
k
∑

i=0

λ(pi) =
k
∑

i=0

(−1)i =







1 if k is even

0 if k is odd.

It follows that F (pa1

1 pa2

2 . . . pam

m ) = 1 if all the exponents ai are even and F (pa1

1 pa2

2 . . . pam

m ) =

0 otherwise. In other words, F (n) = 1 when n is a square and F (n) = 0 otherwise.

Solution to Problem 20. a) Let p be a prime number. If p ∤ m then gcd(p, m) = 1

so φ(pm) = φ(p)φ(m) = (p−1)φ(m). If p|m then m = psk for some s > 0 and k such
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that p ∤ k. Thus φ(m) = φ(ps)φ(k) = ps−1(p − 1)φ(k) and φ(pm) = φ(ps+1)φ(k) =

ps(p − 1)φ(k). It follows that φ(pm) = pφ(m) in this case.

We see that φ(m)|φ(pm) for any prime number p and any positive integer m.

Now if m|n then n = p1p2 . . . ptm for some prime numbers p1, . . . , pt. Thus,

φ(m)|φ(p1m)|φ(p1p2m)| . . . |φ(p1p2 . . . ptm) = φ(n)

i.e. φ(m)|φ(n).

b) The converse of part a) is false. For example, φ(4) = 2, φ(5) = 4 so φ(4)|φ(5)

but clearly 4 ∤ 5.

Solution to Problem 21. a) We have seen in the solution to problem 20a) that if

p is a prime and p|n then φ(pn) = pφ(n).

Let m = p1p2 . . . pt. Since m|n, each prime pi divides n. Thus

φ(mn) = φ(p1p2 . . . ptn) = p1φ(p2 . . . ptn) = p1p2φ(p3 . . . ptn) = . . . = p1p2 . . . ptφ(n) = mφ(n).

Remark. We proved a stronger result, namely that if every prime divisor of m

divides n then φ(mn) = mφ(n).

b) The convesre to part a) is false. Indeed, φ(4 · 6) = 8 = 4φ(6) but 4 ∤ 6.

Remark. However, the converse to the stronger result in the remark above is true:

if φ(mn) = mφ(n) then evry prime divisor of m divides n.

Solution to Problem 28. Consider the set S = {1, 2, . . . , n}. For d|n, let Sd be

the subset of S consisting of those integers m such that gcd(m, n) = n
d
. If m ∈ Sd

then m = n
d
a for some a such that 1 ≤ a ≤ d and gcd(a, d) = 1. Conversely, if

1 ≤ a ≤ d and gcd(a, d) = 1 then an
d

∈ Sd. It follows that

∑

m∈Sd

mk =
∑

1≤a≤d,gcd(a,d)=1

(

a
n

d

)k

= nk φk(d)

dk
.

Clearly, every element of S belongs to exactly one of the subsets Sd. Thus

1k + 2k + . . . + nk =
∑

d|n

(

∑

m∈Sd

mk

)

=
∑

d|n

nk φk(d)

dk
= nk

∑

d|n

φk(d)

dk
.
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Solution to Problem 40. The problem asks as to prove that (ν ∗ 1(n))2 =

(ν3 ∗ 1)(n) for every n. As ν is multipliacative, so are ν3, (ν ∗ 1)2, and ν3 ∗ 1. It

suffices then to show that (ν ∗ 1(pk))2 = (ν3 ∗ 1)(pk) for every prime power pk. Now

(ν ∗ 1)(pk) =
k
∑

i=0

ν(pi) =
k
∑

i=0

(i + 1) =
(k + 1)(k + 2)

2

and

(ν3 ∗ 1)(pk) =
k
∑

i=0

ν3(pi) =
k
∑

i=0

(i + 1)3.

It suffices then to prove that for every positive integer n we have

13 + 23 + . . . + n3 =
n2(n + 1)2

4
.

This can be done, for example, by induction: if

13 + 23 + . . . + n3 =
n2(n + 1)2

4

then

13 + 23 + . . . + n3 + (n + 1)3 =
n2(n + 1)2

4
+ (n + 1)3 = (n + 1)2

(

n2

4
+ n + 1

)

=

= (n + 1)2 (n + 2)2

4
==

(n + 1)2(n + 2)2

4
.

Solution to Problem 51. a)

σ3(12) = 13 + 23 + 33 + 43 + 63 + 123 = 2044.

σ4(8) = 14 + 24 + 44 + 84 = 4361.

b) Let fk(n) = nk. Then fk is multiplicative (even completely multiplicative) and

σk = fk ∗ 1. It follows that σk is multiplicative.

c) Now

σk(pa) =
a
∑

i=0

pik =
a
∑

i=0

(pk)i =
pk(a+1) − 1

pk − 1
.

d) Since σk is multiplicative, part c) yields

σk(pa1

1 pa2

2 . . . par

r ) =
p

k(a1+1)
1 − 1

pk
1 − 1

p
k(a2+1)
2 − 1

pk
2 − 1

. . .
p

k(ar+1)
r − 1

pk
r − 1

.
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