Homework 14, solutions

Solution to Problem 8. Suppose that $e=a / b$ is rational. Then for any $n \geq b$ the number $n!e=n!a / b$ is an integer (since $b \mid n!$). Pick one such n. Clearly $n!/ k!$ is an integer for $k \leq n$. Thus the number

$$
\alpha=n!\left(e-1-\frac{1}{1!}-\frac{1}{2!}-\ldots-\frac{1}{n!}\right)
$$

is an integer. As $e=1+\sum_{k=1}^{\infty} \frac{1}{k!}$, the number α is clearly positive, hence it is a positive integer. It follows that $\alpha \geq 1$. On the other hand,

$$
\alpha=n!\sum_{k=n+1}^{\infty} \frac{1}{k!} .
$$

Note that for $k>n$ we have $\frac{n!}{k!}=\frac{1}{(n+1)(n+2) \ldots k} \leq\left(\frac{1}{n+1}\right)^{k-n}$. Thus

$$
\alpha=\sum_{k=n+1}^{\infty} \frac{n!}{k!} \leq \sum_{k=n+1}^{\infty}\left(\frac{1}{n+1}\right)^{k-n}=\sum_{k=1}^{\infty}\left(\frac{1}{n+1}\right)^{k}=\frac{1}{n+1} \frac{1}{1-\frac{1}{n+1}}=\frac{1}{n} .
$$

We see that α is both at least 1 and less than $1 / n$, which is a clear contradiction. This shows that our assumption that e is rational was wrong, i.e. e is an irrational number.

Remark. It is known that e is not only irrational, but it is transcendental, which means that $f(e) \neq 0$ for every non-zero polynomial f with integer coefficients. The proof of this is much harder though.

Solution to Problem 9. e) We use Euclidean algorithm:

$$
156=3 \cdot 49+9 ; \quad 49=5 \cdot 9+4, \quad 9=2 \cdot 4+1, \quad 4=4 \cdot 1+0
$$

Thus $\frac{156}{49}=[3,5,2,4]$.
f) We use Euclidean algorithm:

$$
64=0 \cdot 391+64, \quad 391=6 \cdot 64+7, \quad 64=9 \cdot 7+1, \quad 7=7 \cdot 1+0 .
$$

Thus $\frac{64}{391}=[0,6,9,7]$.

Solution to Problem 11. e)

$$
[0,2,4,6,8]=0+\frac{1}{2+\frac{1}{4+\frac{1}{6+\frac{1}{8}}}}=\frac{204}{457}
$$

f)

$$
[9,9,9,9]=9+\frac{1}{9+\frac{1}{9+\frac{1}{9}}}=\frac{6805}{747}
$$

Solution to Problem 17. We will use the recursion

$$
p_{n}=k_{n} p_{n-1}+p_{n-2}, p_{-1}=1, p_{0}=k_{0}, \quad \text { and } \quad q_{n}=k_{n} q_{n-1}+q_{n-2}, q_{-1}=0, q_{0}=1 .
$$

Then $p_{0} / q_{0}, p_{1} / q_{1}, \ldots, p_{n} / q_{n}$ are the convergents for the continued fraction $\left[k_{0}, k_{1}, \ldots, k_{n}\right]$.
d) We have $k_{0}=0, k_{1}=1, k_{2}=1, k_{3}=1, k_{4}=1, k_{5}=1, k_{6}=1, k_{7}=4$. Thus

$$
p_{0}=0, p_{1}=1, p_{2}=1, p_{3}=2, p_{4}=3, p_{5}=5, p_{6}=8, p_{7}=37
$$

and

$$
q_{0}=1, q_{1}=1, q_{2}=2, q_{3}=3, q_{4}=5, q_{5}=8, q_{6}=13, q_{7}=60 .
$$

The convergents are $0,1,1 / 2,2 / 3,3 / 5,5 / 8,8 / 13,37 / 60$. We have

$$
0<\frac{1}{2}<\frac{3}{5}<\frac{8}{13}<\frac{37}{60}<\frac{5}{8}<\frac{2}{3}<1 .
$$

e) We have $k_{0}=3, k_{1}=5, k_{2}=2, k_{3}=4$. Thus

$$
p_{0}=3, p_{1}=16, p_{2}=35, p_{3}=156
$$

and

$$
q_{0}=1, q_{1}=5, q_{2}=11, q_{3}=49
$$

The convergents are $3,16 / 5,35 / 11,156 / 49$. We have

$$
3<\frac{35}{11}<\frac{156}{49}<\frac{16}{5}
$$

f) We have $k_{0}=0, k_{1}=6, k_{2}=9, k_{3}=7$. Thus

$$
p_{0}=0, p_{1}=1, p_{2}=9, p_{3}=64
$$

and

$$
q_{0}=1, q_{1}=6, q_{2}=55, q_{3}=391
$$

The convergents are $0,1 / 6,9 / 55,64 / 391$. We have

$$
0<\frac{9}{55}<\frac{64}{391}<\frac{1}{6}
$$

Solution to Problem 18. Clearly $p_{0} / p_{-1}=a_{0}$ and $q_{1} / q_{0}=a_{1}$. Suppose for some $i \geq 0$ we have

$$
\left[a_{i}, a_{i-1}, \ldots, a_{0}\right]=\frac{p_{i}}{p_{i-1}}
$$

Then
$\left[a_{i+1}, a_{i}, a_{i-1}, \ldots, a_{0}\right]=a_{i+1}+\frac{1}{\left[a_{i}, a_{i-1}, \ldots, a_{0}\right]}=a_{i+1}+\frac{p_{i-1}}{p_{i}}=\frac{a_{i+1} p_{i}+p_{i-1}}{p_{i}}=\frac{p_{i+1}}{p_{i}}$.
Similarly, if for some $i \geq 1$ we have

$$
\left[a_{i}, a_{i-1}, \ldots, a_{1}\right]=\frac{q_{i}}{q_{i-1}}
$$

then

$$
\left[a_{i+1}, a_{i}, a_{i-1}, \ldots, a_{1}\right]=a_{i+1}+\frac{1}{\left[a_{i}, a_{i-1}, \ldots, a_{1}\right]}=a_{i+1}+\frac{q_{i-1}}{q_{i}}=\frac{a_{i+1} q_{i}+q_{i-1}}{q_{i}}=\frac{q_{i+1}}{q_{i}} .
$$

Thus the result follows by induction.
Solution to Problem 33. e) Let $x=[2,3,4,2,3,4, \ldots]$. Then

$$
x=2+\frac{1}{3+\frac{1}{4+\frac{1}{x}}}=\frac{30 x+7}{13 x+3} .
$$

Thus $x(13 x+3)=30 x+7$, i.e. $13 x^{2}-27 x-7=0$. The solutions to this equations are $(27 \pm \sqrt{1093}) / 26$. Since $x>2$, we have $x=(27+\sqrt{1093}) / 26$.
f) Let $x=[3,4,3,4, \ldots]$. Thus $x=3+\frac{1}{4+\frac{1}{x}}=\frac{13 x+3}{4 x+1}$. Thus $x(4 x+1)=13 x+3$, i.e. $4 x^{2}-12 x-3=0$. The roots of this equation are $(3 \pm 2 \sqrt{3}) / 2$, so $x=(3+2 \sqrt{3}) / 2$, as $x>3$.

Now

$$
[1,2, \overline{3,4}]=[1,2, x]=1+\frac{1}{2+\frac{1}{x}}=1+\frac{x}{2 x+1}=1+\frac{(3+2 \sqrt{3}) / 2}{4+2 \sqrt{3}}=\frac{4+\sqrt{3}}{4} .
$$

