
Homework 1, solutions

Problem 1. Suppose that a1 = 2 and an+1 = 3an + 2. Prove that an = 3n − 1 for

every natural number n.

Solution: We prove that an = 3n − 1 by induction on n. For n = 1 we have

a1 = 2 = 31 −1, so the result holds for n = 1. Assume that n ≥ 1 and ak = 3k −1 for

k = 1, 2, . . . , n. In particular, an = 3n−1. Therefore an+1 = 3an+2 = 3(3n−1)+2 =

3n+1 −1. Thus the formula holds for n+1. By the method of induction, the formula

holds for every integer n ≥ 1.

Remark. In the inductive step for this problem we only needed to know that the

formula holds for n in order to conclude that it holds for n + 1.

Problem 2. Prove by induction that every natural number n is a sum of disctinct

powers of 2 (e.g. 1 = 20; 2 = 21, 3 = 20 + 21, etc.). Hint: In the inductive step

consider the case when your number is even and the case when it is odd.

Extra credit: prove that such expression is unique. Hint: Observe that 1 + 2 +

4 + .. + 2n < 2n+1

Solution: We prove this by induction on n. The problem provides a verification

of the result for n = 1, 2, 3. Suppose that n ≥ 1 and the result is true for 1, 2, . . . , n.

We want to justify that the result is true for n + 1. Note that n + 1 is either even

or odd.

case 1: n + 1 = 2k is even. Then 1 ≤ k ≤ n, so we know that the result holds for

k. In other words, k = 2m1 + 2m2 + . . . + 2ms for some integer s ≥ 1 and integers

0 ≤ m1 < m2 < . . . < ms. But then

n + 1 = 2k = 2(2m1 + 2m2 + . . . 2ms) = 2m1+1 + 2m2+1 + . . . 2ms+1

is a sum of distinct powers of 2, so the result holds for n + 1.

case 2: n + 1 = 2k + 1 is even. Then again 1 ≤ k ≤ n, so we know that the result

holds for k, as in the first case. In other words, k = 2m1 + 2m2 + . . . + 2ms for some

integer s ≥ 1 and integers 0 ≤ m1 < m2 < . . . < ms. But then

n + 1 = 1 + 2k = 20 + 2(2m1 + 2m2 + . . . + 2ms) = 20 + 2m1+1 + 2m2+1 + . . . 2ms+1.

1



Since 0 < m1 + 1 < m2 + 1 < . . . < ms + 1, n + 1 is a sum of distinct powers of 2,

so the result holds for n + 1.

We proved the result for n + 1 in both cases, hence, by the method of induction,

the result is true for all integers n ≥ 1.

Second proof. Here we giva a differnt inductive proof. As before, suppose that

n ≥ 1 and the result is true for 1, 2, . . . , n. We want to justify that the result is true

for n + 1. There is an integer k ≥ 1 such that 2k ≤ n + 1 < 2k+1. If n + 1 = 2k, the

result clearly holds for n + 1. Otherwise, we have 0 < n + 1 − 2k < 2k < n + 1. It

follows that the result holds for n + 1 − 2k, i.e. n + 1 − 2k = 2m1 + 2m2 + . . . + 2ms for

some integer s ≥ 1 and integers 0 ≤ m1 < m2 < . . . < ms. Clearly ms < k (since

n + 1 − 2k < 2k), so n + 1 = 2m1 + 2m2 + . . . + 2ms + 2k and the result holds for n + 1.

Suppose now that two different sums of distinct powers of 2 add to the same number.

Thus, we have

2m1 + 2m2 + . . . + 2ms = 2n1 + 2n2 + . . . + 2nt

for some integers s, t ≥ 1 and integers 0 ≤ m1 < m2 < . . . < ms, 0 ≤ n1 < n2 <

. . . < nt. We may assume that ms 6= nt (if ms = nt, we can cancel 2ms from both

sides and still have two different sums of distinct powers of 2 adding to the same

number). Without any loss of generality, we may assume that ms < nt. It follows

that 2n1 + 2n2 + . . . + 2nt ≥ 2nt and

2m1 + 2m2 + . . . + 2ms ≤ 20 + 21 + 22 + . . . + 2ms = 2ms+1 − 1 < 2ms+1 ≤ 2nt

which contradicts the equality 2m1 + 2m2 + . . . 2ms = 2n1 + 2n2 + . . . 2nt .

Problem 3. We defined in class v(n) to be the number of positive divisors of n.

Charcterize positive integers n such that v(n) = 3.

Solution: Since v(n) = 3, we must have n > 1 and n is not a prime. It follows

that n = pm for some prime number p and integer m ≥ 2. Note that 1, p, m, pm are

divisors of n, hence two of them must be equal. The only way this can happen is

when p = m, so n = p2 is a suqare of a prime. Conversly, if n = p2 for some prime

p then 1, p, p2 are the only divisors of n, so v(n) = 3.
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