Homework 1, solutions

Problem 1. Suppose that $a_{1}=2$ and $a_{n+1}=3 a_{n}+2$. Prove that $a_{n}=3^{n}-1$ for every natural number n.

Solution: We prove that $a_{n}=3^{n}-1$ by induction on n. For $n=1$ we have $a_{1}=2=3^{1}-1$, so the result holds for $n=1$. Assume that $n \geq 1$ and $a_{k}=3^{k}-1$ for $k=1,2, \ldots, n$. In particular, $a_{n}=3^{n}-1$. Therefore $a_{n+1}=3 a_{n}+2=3\left(3^{n}-1\right)+2=$ $3^{n+1}-1$. Thus the formula holds for $n+1$. By the method of induction, the formula holds for every integer $n \geq 1$.

Remark. In the inductive step for this problem we only needed to know that the formula holds for n in order to conclude that it holds for $n+1$.

Problem 2. Prove by induction that every natural number n is a sum of disctinct powers of 2 (e.g. $1=2^{0} ; 2=2^{1}, 3=2^{0}+2^{1}$, etc.). Hint: In the inductive step consider the case when your number is even and the case when it is odd.

Extra credit: prove that such expression is unique. Hint: Observe that $1+2+$ $4+. .+2^{n}<2^{n+1}$

Solution: We prove this by induction on n. The problem provides a verification of the result for $n=1,2,3$. Suppose that $n \geq 1$ and the result is true for $1,2, \ldots, n$. We want to justify that the result is true for $n+1$. Note that $n+1$ is either even or odd.
case 1: $n+1=2 k$ is even. Then $1 \leq k \leq n$, so we know that the result holds for k. In other words, $k=2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}$ for some integer $s \geq 1$ and integers $0 \leq m_{1}<m_{2}<\ldots<m_{s}$. But then

$$
n+1=2 k=2\left(2^{m_{1}}+2^{m_{2}}+\ldots 2^{m_{s}}\right)=2^{m_{1}+1}+2^{m_{2}+1}+\ldots 2^{m_{s}+1}
$$

is a sum of distinct powers of 2 , so the result holds for $n+1$.
case 2: $n+1=2 k+1$ is even. Then again $1 \leq k \leq n$, so we know that the result holds for k, as in the first case. In other words, $k=2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}$ for some integer $s \geq 1$ and integers $0 \leq m_{1}<m_{2}<\ldots<m_{s}$. But then

$$
n+1=1+2 k=2^{0}+2\left(2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}\right)=2^{0}+2^{m_{1}+1}+2^{m_{2}+1}+\ldots 2^{m_{s}+1} .
$$

Since $0<m_{1}+1<m_{2}+1<\ldots<m_{s}+1, n+1$ is a sum of distinct powers of 2 , so the result holds for $n+1$.

We proved the result for $n+1$ in both cases, hence, by the method of induction, the result is true for all integers $n \geq 1$.

Second proof. Here we giva a differnt inductive proof. As before, suppose that $n \geq 1$ and the result is true for $1,2, \ldots, n$. We want to justify that the result is true for $n+1$. There is an integer $k \geq 1$ such that $2^{k} \leq n+1<2^{k+1}$. If $n+1=2^{k}$, the result clearly holds for $n+1$. Otherwise, we have $0<n+1-2^{k}<2^{k}<n+1$. It follows that the result holds for $n+1-2^{k}$, i.e. $n+1-2^{k}=2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}$ for some integer $s \geq 1$ and integers $0 \leq m_{1}<m_{2}<\ldots<m_{s}$. Clearly $m_{s}<k$ (since $n+1-2^{k}<2^{k}$, so $n+1=2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}+2^{k}$ and the result holds for $n+1$.

Suppose now that two different sums of distinct powers of 2 add to the same number. Thus, we have

$$
2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}}=2^{n_{1}}+2^{n_{2}}+\ldots+2^{n_{t}}
$$

for some integers $s, t \geq 1$ and integers $0 \leq m_{1}<m_{2}<\ldots<m_{s}, 0 \leq n_{1}<n_{2}<$ $\ldots<n_{t}$. We may assume that $m_{s} \neq n_{t}$ (if $m_{s}=n_{t}$, we can cancel $2^{m_{s}}$ from both sides and still have two different sums of distinct powers of 2 adding to the same number). Without any loss of generality, we may assume that $m_{s}<n_{t}$. It follows that $2^{n_{1}}+2^{n_{2}}+\ldots+2^{n_{t}} \geq 2^{n_{t}}$ and

$$
2^{m_{1}}+2^{m_{2}}+\ldots+2^{m_{s}} \leq 2^{0}+2^{1}+2^{2}+\ldots+2^{m_{s}}=2^{m_{s}+1}-1<2^{m_{s}+1} \leq 2^{n_{t}}
$$

which contradicts the equality $2^{m_{1}}+2^{m_{2}}+\ldots 2^{m_{s}}=2^{n_{1}}+2^{n_{2}}+\ldots 2^{n_{t}}$.
Problem 3. We defined in class $v(n)$ to be the number of positive divisors of n. Charcterize positive integers n such that $v(n)=3$.

Solution: Since $v(n)=3$, we must have $n>1$ and n is not a prime. It follows that $n=p m$ for some prime number p and integer $m \geq 2$. Note that $1, p, m, p m$ are divisors of n, hence two of them must be equal. The only way this can happen is when $p=m$, so $n=p^{2}$ is a suqare of a prime. Conversly, if $n=p^{2}$ for some prime p then $1, p, p^{2}$ are the only divisors of n, so $v(n)=3$.

