Homework 2

due on Friday, January 26
Read sections 1.3, 1.4, 1.5 in the book. Solve problem 57 in Chapter 1 and the following problems.

Problem 1. Prove that if a, b are relatively prime integers such that $a \mid c$ and $b \mid c$ then $a b \mid c$. Hint: Write $c=a c_{1}, u a+w b=1$ for some integers u, w and use this to show that $b \mid c_{1}$.

Problem 2. For positive integers a, b define $[a, b]=a b / \operatorname{gcd}(a, b)$.
a) Prove that $a / \operatorname{gcd}(a, b)$ and $b / \operatorname{gcd}(a, b)$ are relatively prime.
b) Prove that if $a \mid c$ and $b \mid c$ then $[a, b] \mid c$.
c) Conlcude that $[a, b]$ is the smallest positive integer divisible by both a and b (we call it the least common multiple of a and b).

Problem 3. Let $F_{n}=2^{2^{n}}+1$, for $n=0,1,2, \ldots$.
a) Prove that $F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n}=F_{n+1}-2$ for every n.
b) Prove that $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$ for $n \neq m$.
c) Use b) to give yet another proof that the set of primes is infinite.

