Homework 2

due on Friday, January 26

Read sections 1.3, 1.4, 1.5 in the book. Solve problem 57 in Chapter 1 and the following problems.

Problem 1. Prove that if a, b are relatively prime integers such that a|c and b|c then ab|c. Hint: Write $c = ac_1$, ua + wb = 1 for some integers u, w and use this to show that $b|c_1$.

Problem 2. For positive integers a, b define $[a, b] = ab/\operatorname{gcd}(a, b)$.

a) Prove that $a / \gcd(a, b)$ and $b / \gcd(a, b)$ are relatively prime.

b) Prove that if a|c and b|c then [a, b]|c.

c) Conlcude that [a, b] is the smallest positive integer divisible by both a and b (we call it the **least common multiple of** a **and** b).

Problem 3. Let $F_n = 2^{2^n} + 1$, for n = 0, 1, 2, ...

- a) Prove that $F_0 \cdot F_1 \cdot F_2 \cdot \ldots \cdot F_n = F_{n+1} 2$ for every n.
- b) Prove that $gcd(F_n, F_m) = 1$ for $n \neq m$.
- c) Use b) to give yet another proof that the set of primes is infinite.