Homework 2, solutions

Problem 1. Prove that if a, b are relatively prime integers such that $a \mid c$ and $b \mid c$ then $a b \mid c$. Hint: Write $c=a c_{1}, u a+w b=1$ for some integers u, w and use this to show that $b \mid c_{1}$.

Solution. We folow the hint. Since $a \mid c$ we have $c=a c_{1}$ for some integer c_{1}. Since a, b are relatively prime, there exist integers u, w such that $1=u a+w b$. Multiplying the last equality by c_{1}, we arrive at $c_{1}=u a c_{1}+w b c_{1}=u c+b w c_{1}$. Since both $u c$ and $b w c_{1}$ are clearly divisible by b, we conclude that $b \mid c_{1}$, i.e. $c_{1}=b c_{2}$ for some integer c_{2}. It follows that $c=a c_{1}=a b c_{2}$, so $a b \mid c_{2}$.

Problem 2. For positive integers a, b define $[a, b]=a b / \operatorname{gcd}(a, b)$.
a) Prove that $a / \operatorname{gcd}(a, b)$ and $b / \operatorname{gcd}(a, b)$ are relatively prime.
b) Prove that if $a \mid c$ and $b \mid c$ then $[a, b] \mid c$.
c) Conlcude that $[a, b]$ is the smallest positive integer divisible by both a and b (we call it the least common multiple of a and b).

Solution: a) If $d>0$ is a common divisor of $a / \operatorname{gcd}(a, b)$ and $b / \operatorname{gcd}(a, b)$ then $d \operatorname{gcd}(a, b)$ divides both a and b and hence $d \operatorname{gcd}(a, b) \leq \operatorname{gcd}(a, b)$. It follows that $d \leq 1$, i.e. $d=1$. In other words, $a / \operatorname{gcd}(a, b)$ and $b / \operatorname{gcd}(a, b)$ do not have any positive common divisors different from 1, i.e. they are relatively prime.
b) Note that $a \mid c$ implies that $\left.\frac{a}{\operatorname{gcd}(a, b)} \right\rvert\, \frac{c}{\operatorname{gcd}(a, b)}$. Similarly, $\left.\frac{b}{\operatorname{gcd}(a, b)} \right\rvert\, \frac{c}{\operatorname{gcd}(a, b)}$. Since the numbers $a / \operatorname{gcd}(a, b)$ and $b / \operatorname{gcd}(a, b)$ are relatively prime by part a), we conclude (using Problem 1) that their product also divides $c / \operatorname{gcd}(a, b)$. In other words $\left.\frac{a b}{\operatorname{gcd}(a, b)^{2}} \right\rvert\, \frac{c}{\operatorname{gcd}(a, b)}$. It follows that $\left.[a, b]=\frac{a b}{\operatorname{gcd}(a, b)} \right\rvert\, c$.
c) Clearly $[a, b]$ is divisible by both a and b. On the other hand, any positive integer divisible by both a and b is, according to b), also divisible by $[a, b]$, hence it can not be smaller than $[a, b]$. It means that $[a, b]$ is the lest common multiple of a and b.

Problem 3. Let $F_{n}=2^{2^{n}}+1$, for $n=0,1,2, \ldots$
a) Prove that $F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n}=F_{n+1}-2$ for every n.
b) Prove that $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$ for $n \neq m$.
c) Use b) to give yet another proof that the set of primes is infinite.

Solution: a) The easiest proof seems to be by induction on n. Since $F_{0}=3=$ $5-2=F_{1}-2$, the result holds for $n=0$. Suppose that $n \geq 0$ and the result holds for $0,1, \ldots, n$. In particular,

$$
F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n}=F_{n+1}-2=2^{2^{n+1}}-1
$$

Multiplying both sides by $F_{n+1}=2^{2^{n+1}}+1$ we get

$$
F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n} \cdot F_{n+1}=\left(2^{2^{n+1}}-1\right)\left(2^{2^{n+1}}+1\right)=2^{2^{n+2}}-1=F_{n+2}-2
$$

so the result holds for $n+1$. By induction, it holds for every $n \geq 0$.
b) Suppose that $m<n$ and d is the greatest common divisor of F_{m} and F_{n}. Clearly d divides $F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n-1}$ (since F_{m} is one of the factors) and therefore it divides the difference $F_{n}-F_{0} \cdot F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n-1}$, which is 2 by a). Thus $d \mid 2$, i.e. $d=1$ or $d=2$. Hovewer $d=2$ is not possible, since the numbers F_{k} are all odd. Hence $d=1$, i.e. $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$.
c) Each of the numbers F_{n} has a prime divisor, call it p_{n}. Since any two among the numbers F_{n} are relatively prime, no two of the primes p_{n} can be the same. Thus we have an infinite list of pairwise distinct prime numbers.

Remark. The numbers F_{n} are called Fermat numbers. It is no hard to see that $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$ are prime numbers. However, Euler proved that F_{5} is not a prime. It is still unknown if there exists $n>4$ such that F_{n} is a prime number.

Solution to Problem 57 from chapter 1 of the textbook: We only solve part b), part a) follows the same method.

We use the fact that $\operatorname{gcd}(210,294,490,735)=\operatorname{gcd}(210, \operatorname{gcd}(294, \operatorname{gcd}(490,735)))$. First we compute $\operatorname{gcd}(490,735)$ using Euclidean algorithm:

$$
735=1 \cdot 490+245 ; \quad 490=2 \cdot 245+0
$$

We see that $\operatorname{gcd}(490,735)=245$. Working backwards, or using the matrix multiplication method (see the solution to the first quiz), we find that

$$
\operatorname{gcd}(490,735)=245=1 \cdot 735+(-1) \cdot 490
$$

Now, again using the Euclidean algorithm, we compute gcd(294, 245):

$$
294=1 \cdot 245+49 ; \quad 245=5 \cdot 49+0
$$

We see that

$$
\operatorname{gcd}(294,245)=49=1 \cdot 294+(-1) \cdot 245
$$

Finaaly, again using the Euclidean algorithm, we compute $\operatorname{gcd}(210,49)$:

$$
210=4 \cdot 49+14 ; \quad 49=3 \cdot 14+7 ; \quad 14=2 \cdot 7+0
$$

We see that

$$
\operatorname{gcd}(210,49)=7=(-3) \cdot 210+13 \cdot 49
$$

We conclude that $\operatorname{gcd}(210,294,490,735)=7$ and $7=(-3) \cdot 210+13 \cdot 49=(-3) \cdot 210+13(1 \cdot 294+(-1) \cdot 245)=(-3) \cdot 210+13 \cdot 294+(-13) \cdot 245=$ $=(-3) \cdot 210+13 \cdot 294+(-13)(1 \cdot 735+(-1) \cdot 490)=(-3) \cdot 210+13 \cdot 294+(-13) \cdot 735+13 \cdot 490$.

