
Homework 3, solutions

Problem 1. Read the proof of Proposition 1.22 (page 32) in the book. Using simialr

method prove that there are infinitely many prime numbers of the form 3n + 2.

Solution. Note that every prime number different from 3 is either of the form 3k+1

or of the form 3k + 2. Note also that a product of any 2 numbers of the form 3k + 1

is again of this form:

(3a + 1)(3b + 1) = 3(3ab + a + b) + 1.

It follows that any positive integer n of the form 3k + 2 must have a prime divisor

of the form 3k + 2. Indeed, otherwise all prime divisors of n would be of the form

3k + 1 (note that 3 ∤ n) and n would be a product of these primes, hence it would

again be of the form 3k + 1.

Now we can follow Euclid’s proof that the set of all primes is infinite. Suppose

that p1, . . . , pm are odd primes of the form 3k + 2. Consider the number N =

3p1p2 . . . pm + 2. As we noticed above, N must have a prime divisor p of the form

3k + 2 and this divisor must be odd, as N is odd. But none of the odd primes

p1, . . . , pm can divide N (as they all divide N − 2) so p must be a new odd prime of

the form 3k + 2.

Remark. Alternatively, one could look at n! − 1 , which is of the form 3k + 2 for

n ≥ 3, and conclude that it must have a prime divisor of the form 3k + 2 and any

such divisor is bigger than n.

Problem 2. Let a > 1 and n > 1 be positive integers.

a) Prove that if an − 1 is a prime then a = 2 and n is a prime.

b) Prove that if an + 1 is a prime then a is even and n = 2k for some k (Hint: if n

is not a power of 2 then n has an odd divisor).

Hint. The identity an − bn = (a − b)(an−1 + an−2b + an−3b2 + . . . + abn−2 + bn−1)

should be helpful. Prove this identity.

Solution. a) Recall that we proved that an − 1 = (a − 1)(1 + a + a2 + . . . + an−1).
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If a > 2 then this identity provides a factorization of an − 1 into two factors bigger

than 1, hence an − 1 cannot be a prime number. Suppose now that a = 2. If n is

not a prime, then n = kl for some integers k > 1, l > 1. Note that an = (al)k and

our identity yields

an − 1 = (al)k − 1 = (al − 1)(1 + al + (al)2 + . . . + (al)n−1)

so an − 1 is not a prime.

Thus when an − 1 is a prime we must have a = 2 and n has to be a prime.

b) The resoning here is similar to the one in a) but it is based on the identity

an + 1 = (a + 1)(1 − a + a2 − . . . + an−1),

which holds for all odd natural numbers n. This identity follows from the identity

used in a) by observing that for n odd we have

an + 1 = −((−a)n − 1) = −((−a) − 1)(1 + (−a) + (−a)2 + . . . + (−a)n−1) =

(a + 1)(1 − a + a2 − . . . + an−1.

Suppose now that n is not a power of 2. Then n = kl for some odd k > 1. Thus

an + 1 = (al)k + 1 = (al + 1)(1 − al + (al)2 − . . . + (al)k−1)

i.e. an + 1 factors into a product of two integers bigger than 1. Thus an + 1 cannot

be a prime. In other words, if an + 1 is a prime, then n must be a power of 2.

Moreover, as an + 1 > 2, an + 1 must be odd, hence a must be even.

Remark. The identity in the hint follows from the identity used in a). We have

(a

b

)n

− 1 =
(a

b
− 1

)

(

1 +
(a

b

)

+
(a

b

)2

+ . . . +
(a

b

)n−1
)

.

Multiply both sides by bn to get the identity in the hint.

Problem 3. Recall that when p is a prime number and n 6= 0 an integer then ep(n)

is the largest integer a such that pa|n.

a) Prove that if n > 1 and p > n is a prime then ep(n!) = 0
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b) Recall thal ⌊x⌋ denotes the largest integer not exceeding x. Prove that if n, k are

positive integers then

⌊

n + 1

k

⌋

=







⌊

n
k

⌋

if k ∤ (n + 1)

1 +
⌊

n
k

⌋

if k|(n + 1)
.

c) Prove that if n > 1 and p ≤ n is a prime then

ep(n!) =

⌊

n

p

⌋

+

⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ . . .

(note that the sum is actually finite since ⌊n/pk⌋ = 0 when pk > n.

Hint. There are several ways to prove this, but I suggest a proof by induction on

n. Note that ep((n + 1)!) = ep(n!) + ep(n + 1) and use part b) (this is why b) is part

of this problem).

d) Use c) to write the prime factorization of 20!.

e) Find the number of zeros with which the decimal representation of 99! terminates.

Solution. a) Note that if p > k > 0 then ep(k) = 0. Recall that ep(ab) =

ep(a) + ep(b). It follows that

ep(n!) = ep(2) + ep(3) + . . . + ep(n) = 0

when p > n.

b) Let m = ⌊n/k⌋. Then m ≤ n/k < (m+1), so km ≤ n < k(m+1). It follows that

km < n + 1 ≤ k(m + 1) (we are using here a simple but very useful observation that

if a < b are integers then a + 1 ≤ b). If k ∤ (n + 1), then we cannot have equality on

the right, i.e. km < n+1 < k(m+1). This means that m < (n+1)/k < (m+1), i.e

m = ⌊(n + 1)/k⌋. On the other hand, if k|(n + 1) then from km < n + 1 ≤ k(m + 1)

we conclude that n + 1 = k(m + 1), so m + 1 = (n + 1)/k = ⌊(n + 1)/k⌋.

c) First note that we do not need to assume that p ≤ n as for p > n the right hand

side of the formula is clearly 0 and the left hand side is also 0 by part a).

We use induction on n. For n = 2 we already now that the formula works when

p > 2 and for p = 2 it clearly works as well.
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Suppose that the formula works for all primes and numbers n = 2, 3, . . . N . We

want to show that it works when n = N + 1. Consider a prime number p. So we

know that

ep(N !) =

⌊

N

p

⌋

+

⌊

N

p2

⌋

+

⌊

N

p3

⌋

+ . . . .

Let ep(N + 1) = k. Then pi|N + 1 for i ≤ k and pi ∤ N + 1 for i > k. By part b) we

have
⌊

N + 1

pi

⌋

=







⌊

N
pi

⌋

if i > k

1 +
⌊

N
pi

⌋

if i ≤ k
.

It follows that
⌊

N + 1

p

⌋

+

⌊

N + 1

p2

⌋

+

⌊

N + 1

p3

⌋

+ . . . = k +

⌊

N

p

⌋

+

⌊

N

p2

⌋

+

⌊

N

p3

⌋

+ . . . =

eP (N + 1) + ep(N !) = ep((N + 1)!).

Thus the formula indeed works for N + 1. By the method of induction, the formula

is true for all prime numbers p and all integers n ≥ 2.

d) By a), we know that only primes smaller than 20 will contribute to 20!. Now we

use our formula from c) to compute the contributions of the primes up to 20:

e2(20!) =

⌊

20

2

⌋

+

⌊

20

4

⌋

+

⌊

20

8

⌋

+

⌊

20

16

⌋

= 10 + 5 + 2 + 1 = 18.

e3(20!) =

⌊

20

3

⌋

+

⌊

20

9

⌋

= 6 + 2 = 8.

e5(20!) =

⌊

20

5

⌋

= 4.

e7(20!) =

⌊

20

7

⌋

= 2.

e11(20!) =

⌊

20

11

⌋

= 1.

e13(20!) =

⌊

20

13

⌋

= 1.

e17(20!) =

⌊

20

17

⌋

= 1.

4



e19(20!) =

⌊

20

19

⌋

= 1.

Thus 20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

e) Note that the number of zeros with which the decimal representation of some

nunber n terminates is euqal to the highest power of 10 which divides n. Since

10 = 2 · 5, the highest power of 10 dividing n is equal to the smaller of the numbers

e2(n) and e5(n).

Now, by part c), we have

e2(99!) =

⌊

99

2

⌋

+

⌊

99

4

⌋

+

⌊

99

8

⌋

+

⌊

99

16

⌋

+

⌊

99

32

⌋

+

⌊

99

64

⌋

= 49+24+12+6+3+1 = 95

and

e5(99!) =

⌊

99

5

⌋

+

⌊

99

25

⌋

= 19 + 3 = 22.

Thus 99! ends with 22 zeros.

Problem 4. a) Suppose that a prime p divides both ab and c. Then, by Euclid’s

Lemma, p divides either a or b. This however is not possible, as both gcd(a, c) = 1

and gcd(b, c) = 1. Thus ab and c cannot have any common prime divisors, hence

gcd(ab, c) = 1.

b) Suppose that a prime p divides both an and bm. By Euclid’s Lemma, p divides a

and p divides b. This however contradicts our assumption that gcd(a, b) = 1. Thus

an, bm cannot have any common prime divisors, hence gcd(an, bm) = 1.

c) If d|a and d|b then d|an and d|bm so d = 1, as gcd(an, bm) = 1. Thus gcd(a, b) = 1.

d) Let d = gcd(a, b) so a = da1, b = db1 and gcd(a1, b1) = 1. Since (da1)
n|(db1)

n

then an
1
|bn

1
. However, gcd(an

1
, bn

1
) = 1 by part b). Thus an

1
= 1, so a1 = 1 and d = a.

It follows that a|b.
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