Homework 4, solutions

Sulution to problem 19. Let $a_{k} a_{k-1} \ldots a_{0}$ be a decimal representation of a positive integer n. This means that $n=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\ldots+a_{k} \cdot 10^{k}$, where a_{i} are the decimal digits of n. We can also write this as

$$
n=\left(a_{2} a_{1} a_{0}\right)+\left(a_{5} a_{4} a_{3}\right) \cdot 10^{3}+\left(a_{8} a_{7} a_{6}\right) \cdot\left(10^{3}\right)^{2}+\left(a_{11} a_{10} a_{9}\right) \cdot\left(10^{3}\right)^{3} \cdots,
$$

where $a_{i+2} a_{i+1} a_{i}=a_{i}+10 a_{i+1}+100 a_{i+2}$ is the three digit number formed by 3 consecutive digits of n. Now $1001=7 \cdot 11 \cdot 13$ means that for $p \in\{7,11,13\}$ we have $10^{3} \equiv-1(\bmod p)$. Thus

$$
\begin{aligned}
n= & \left(a_{2} a_{1} a_{0}\right)+\left(a_{5} a_{4} a_{3}\right) \cdot 10^{3}+\left(a_{8} a_{7} a_{6}\right) \cdot\left(10^{3}\right)^{2}+\left(a_{11} a_{10} a_{9}\right) \cdot\left(10^{3}\right)^{3} \cdots \equiv \\
& \equiv\left(a_{2} a_{1} a_{0}\right)-\left(a_{5} a_{4} a_{3}\right)+\left(a_{8} a_{7} a_{6}\right)-\left(a_{11} a_{10} a_{9}\right)+\cdots(\bmod p) .
\end{aligned}
$$

For example,

$$
123456789 \equiv 789-456+123=456(\bmod 13)
$$

This observation provides a fairly fast algorithm to raplace a given number by a congruent three digit number when the modulus is 7,11 , or 13 (or any other divisor of 1001). The three digit number has to be then further reduced by hand. In the example above, we see that $456 \equiv 1(\bmod 13)$.

Solution to problem 21. We have (172195)(572167) $=985242 x 6565$. We will work modulo 11 and use what we learned in class (see problem 18 in the book). We have
$172195 \equiv 5-9+1-2+7-1=1(\bmod 11), \quad 572167 \equiv 7-6+1-2+7-5=2(\bmod 11)$, and

$$
985242 x 6565 \equiv 5-6+5-6+x-2+4-2+5-8+9=4+x(\bmod 11)
$$

It follows that $4+x \equiv 1 \cdot 2=2(\bmod 11)$, i.e. $x \equiv-2(\bmod 11)$. The only digit which satisfies this congruence is $x=9$.

Solution to problem 26. a) The congruence $a^{2} \equiv b^{2}(\bmod p)$ means that

$$
p \mid\left(a^{2}-b^{2}\right)=(a-b)(a+b) .
$$

Since p is a prime number, Euclid's Lemma tells us that either $p \mid(a-b)$ or $p \mid(a+b)$. The first case says $a \equiv b(\bmod p)$, the second case says $a \equiv-b(\bmod p)$. In other words, $a \equiv \pm b(\bmod p)$.
b)We use same reasoning as in a). We have $p \mid\left(a^{2}-a\right)=a(a-1)$, so either $p \mid a$ or $p \mid(a-1)$ (by Euclid's Lemma). Thus either $a \equiv 0(\bmod p)$ or $a \equiv 1(\bmod p)$.

Remark. The above argument easily extends to the following general result (equivalent to Euclid's Lemma):
if p is a prime and $a b \equiv 0(\bmod p)$ the either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.
Read section 2.1 in the book. Solve problems 19, 21, 26 to section 2.1.

