
Homework 5, solutions

Problem 1. Let m, n be positive integers. How many multiples of n are in the

sequence m, 2m, 3m, . . . , nm?

Solution: The problem asks about the number of solutions to the congruence

mx ≡ 0( mod n) among the numbers 1, 2, . . . n. Since the set 1, 2, . . . n forms a

complete system of residues modulo n, it is the same as to ask about the number

of incongruent solutions modulo n to mx ≡ 0( mod n). Since gcd(m, n) clearly

divides 0, we know that solutions exists and their numbers is exactly gcd(m, n).

Thus there are exactly gcd(m, n) multiples of n in our sequence.

Problem 2. Find a positive integer such that half of it is a square, a third of it is

a cube, and a fifth of it is a fifth power. Hint: think in terms of prime factorization.

Solution: We recall first the following simple but very useful obsrevation: a positive

integer n is a k-th power if and only if every prime number appears in n with

exponenet divisible by k. In other words, n is a k-th power if and only if ep(n) is

divisible by k for every prime number p.

We look for our number among numbers of the form 2x3y5z. Half of our number

, i.e. 2x−13y5z is a square if and only if x − 1, y, z are all even. Similarly, a third

of our number, i.e. 2x3y−15z, is a cube if and only if all three numbers x, y − 1, z

are divisible by 3. Finally, a fifth of our number, i.e. 2x3y5z−1, is a fifth power if

and only if all three numbers x, y, z − 1 are divisible by 5. Thus we are looking for

a positive integer x which satisfies the following congruences:

x ≡ 1( mod 2), x ≡ 0( mod 3) x ≡ 0( mod 5).

By the Chinese remainder theorem, there is unique such x modulo 30. Following

the method provided by the Chinese remainder theorem we find that x = 15 works.

Similarly, we are looking for a positive integer y such that

y ≡ 0( mod 2), y ≡ 1( mod 3) y ≡ 0( mod 5).

Again, using the Chinese remainder theorem, we find that y = 10 works.
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Finally, we are looking for positive integer z such that

z ≡ 0( mod 2), z ≡ 0( mod 3) z ≡ 1( mod 5).

The Chinese remainder theorem allows us to find that z = 6 works.

Thus the number 21531056 satisfies the conditions of our problem.

Execise: Show that a number n is a sulution to the problem if and only if

n = 21531056m30 for some integer m.

Solution to Problem 38. Let d = gcd(m1, m2). If x is a solution to

x ≡ b1( mod m1), x ≡ b2( mod m2)

then x satisfies also the congruences

x ≡ b1( mod d), x ≡ b2( mod d).

Subtracting the last two congruences, we get b1 − b2 ≡ 0( mod d), so indeed d must

divide b1 − b2.

Suppose converesely, that d divides b1 − b2. We look for a solution x of the form

b1 + ym1 for appropriate integer y. Any such integer automatically is a solution to

the first congruence and in order to be a solution to the second congruence we must

have b1 + ym1 ≡ b2( mod m2). This congruence is equivalent to

m1y ≡ b2 − b1( mod m2).

Since gcd(m1, m2) = d|b2 − b1, we know that this congruence has a solution y and

then x = b1 + m1y is a solution to our sytem of congruences.

Finally, suppose that x1 and x2 both are solutions to our system. Then

x1 ≡ x2 ≡ b1( mod m1) and x1 ≡ x2 ≡ b2( mod m2).

It follows that both m1 and m2 divide x1 − x2, and threfore also the lcm(m1, m2)

divies x1 − x2. This means that the solution is unique modulo lcm(m1, m2).

Solution to Problem 35: We want to find a smallest positive integer n such that

n ≡ 1( mod 2), n ≡ 2( mod 3), n ≡ 3( mod 4),
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n ≡ 4( mod 5), n ≡ 5( mod 6), n ≡ 0( mod 7).

We can not apply the Chinese reminder theorem right away as the moduli are

not pairwise relatively prime. We note however that some of the congruences are

consequences of the others. In fact, suppose that n satisfies

n ≡ 2( mod 3), n ≡ 3( mod 4), n ≡ 4( mod 5), n ≡ 0( mod 7).

The second congruence tells us that n is odd, so n ≡ 1( mod 2). Also, as n is odd

and n ≡ 2( mod 3), we have n ≡ 5( mod 6) (the system x ≡ 1( mod 2), x ≡ 2(

mod 3) has a unique solution modulo 6, and 5 is that solution). So we reduced our

problem to a sysstem of 4 congruences which satisfy the requirements of the Chinese

remainder theorem, as the moduli m1 = 3, m2 = 4, m3 = 5, and m4 = 7 are pairwise

relatively prime. We have b1 = 2, b2 = 3, b3 = 4, b4 = 0.

To solve the system, we take M = 3 · 4 · 5 · 7 = 420. Then M1 = 420/3 = 140,

M2 = 420/4 = 105, M3 = 420/5 = 84, M4 = 420/7 = 60. Now we need to find the

inverse xi of Mi modulo mi, i = 1, 2, 3, 4. Then

n ≡ M1x1b1 + M2x2b2 + M3x3b3 + M4x4b4( mod M)

will be our solution. Finding the inverses is rather easy as the moduli mi are small.

As M1 ≡ 2( mod 3), we see that x1 = 2. Similarly, M2 ≡ 1( mod 4), so x2 = 1.

Now M3 ≡ 4( mod 5) so x3 = 4. Finally M4 ≡ 4( mod 7)so x4 = 2. It follows that

n ≡ 140 · 2 · 2 + 105 · 1 · 3 + 84 · 4 · 4 + 60 · 2 · 0 = 560 + 315 + 1404 ≡ 119( mod 420).

The smallest positive solution is therefore 119

Solution to Probl;em 34c): We are asked to solve the system

5x ≡ 3( mod 7), 2x ≡ 4( mod 8) 3x ≡ 6( mod 9).

This problem may be slighly confusing. When we deal with one congruence modulo

some integre m then solving the congruence means finding all residues modulo m

which satisfy the congreunce. In the above problem we have several congruences,

with different moduli, so what do we mean by solving it? Well, one answer is that

we want to describe all integers x which satisfy the system of congruences. We will

do just that.
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In the first congruence, 5 is relatively prime to 7, so it is invertible modulo 7

and the inverse of 5 modulo 7 is easily seen to be 3. Multiplying the congruence by

3, we get equivalent congruence x ≡ 2( mod 7). For the second congruence, note

that x satisfies 2x ≡ 4( mod 8) if and only if x satisfies x ≡ 2( mod 4). Finally,

x satisfies the third congruence if and only if x ≡ 2( mod 3). Thus, the set of

all integers satisfying our original system of congruences is the same as the set of

integral solutions to the system

x ≡ 2( mod 7), x ≡ 2( mod 4) x ≡ 2( mod 3).

This system qualifies for the Chinese remainder theorem. Following the method

provided by this theorem, we find that the unique solution modulo 3 · 4 · 7 = 84

to this system is x = 2 (in this particular case the system is so simple that we do

not need to involve the Chinese remainder theorem: we are looking for x such that

x − 2 is divisible by 7, 4, and 3, which is the same as x − 2 divisible by 84). Thus

the solutions to the system all all integers x such that x ≡ 2( mod 84).

Remark. The original problem could be phrased as follows: find all solutions

modulo 7 · 8 · 9 = 504 of the given system. In this case, the answer would be that

there are 6 solutions modulo 504: 2, 86, 170, 254, 338, 422.

Solution to Problem 29f: Recall thet when n, m are relatively prime then we can

find s, t such that sn + tm = 1 (for example, using the Euclidean algorithm). Then

we have ns ≡ 1( mod m), so s is an inverse of n modulo m.

We do this when n = 1333, m = 1517. The Euclidean algorithm runs as follows:

1517 = 1·1333+184, 1333 = 7·184+45, 184 = 4·45+4, 45 = 11·4+1, 4 = 4·1+0.

From this we have 371 ·1333−326 ·1517 = 1. Thus the inverse of 1333 modulo 1517

is 371.

Part e) is solved by the same method.

Solution to Problem 28e): We start by finding the gcd(623, 679):

679 = 1 · 623 + 56, 623 = 11 · 56 + 7, 56 = 8 · 7 + 0.

Thus gcd(678, 623) = 7 and 7 = 12 · 623 − 11 · 679. Dividing by 7, we have

1 = 12 · 89 − 11 · 97.
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Now 511 = 7 · 73, so the congruence has solutions and we will have 7 different

solutions modulo 679. To find these solutions we first solve 89x ≡ 73( mod 97).

From our computations above we see that 12 is the inverse of 89 modulo 97. Thus

x ≡ 12·73 ≡ 3( mod 97). Thus the solutions modulo 679 to our original congruence

are 3, 3+97 = 100, 100+97 = 197, 197+97 = 294, 294+97 = 391, 391+97 = 488,

488 + 97 = 585.
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