
Homework 6, solutions

Solution to Problem 47. a) Wilson’s Theorem tells us that

(p − 1)! ≡ −1( mod p).

Now, in the product 1 · 2 · 3 . . . · (p − 1) we can pair 1 and p − 1, 2 and p − 2, 3 and

p − 3, ..., p−1
2

and p −
p−1

2
= p+1

2
to get

(p − 1)! = [1 · (p − 1)][2(p − 2)][3(p − 3)] . . . ·

[

p − 1

2
· (p −

p − 1

2
)

]

.

Since p − k ≡ −k( mod p), we get

(p − 1)! ≡ [1 · (−1)][2(−2)][3(−3)] . . . ·

[

p − 1

2
· (−

p − 1

2
)

]

= (−1)(p−1)/2

[

(
p − 1

2
)!

]2

.

Thus, by Wilson’s theorem, we get

(−1)(p−1)/2

[

(
p − 1

2
)!

]2

≡ −1( mod p).

Multiplying both sides by (−1)(p−1)/2 we have

[

(
p − 1

2
)!

]2

≡ (−1)1+(p−1)/2 = (−1)(p+1)/2( mod p).

When p ≡ 1( mod 4) then (−1)(p+1)/2 = −1 so x = (p−1
2

)! satisfies

x2 ≡ −1( mod p). This shows part b).

When p ≡ 3( mod 4) then (−1)(p+1)/2 = 1 so x = (p−1
2

)! satisfies

x2 ≡ 1( mod p). This shows part c).

Solution to Problem 48. Note that when k varies over all odd numbers between

1 and p − 1 then p − k varies over all even numbers form p − 1 to 1. Thus

(p − 1)! = 1 · 3 · 5 · . . . · (p − 2) · (p − 1)(p − 3)(p − 5) · . . . · (p − (p − 2)) ≡

≡ 1·3·5·. . .·(p−2)(−1)(−3)(−5) . . . (−(p−2)) = (−1)(p−1)/2(1·3·5·. . .·(p−2))2( mod p).

Using Wilson’s Theorem, we get

(−1)(p−1)/2(1 · 3 · 5 · . . . · (p − 2))2
≡ −1( mod p)
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and, as in problem 47, this is the same as

(1 · 3 · 5 · . . . · (p − 2))2
≡ (−1)(p+1)/2( mod p).

Solution to Problem 55. Let n = 2 ·73 ·1103 = 161038. Note that 2, 73, and 1103

are prime numbers. We need to show that 2n ≡ 2( mod n), which is equivalent to

2n ≡ 2( mod 2), 2n ≡ 2( mod 73), and 2n ≡ 2( mod 1103). The first congruence

is clear. Unfortunately, to show the other congruences, we need a bit more than

just Fermat’s Little Theorem. We have 26 = 64 ≡ −9( mod 73). Multiplying by

8, we get 29 ≡ −72 ≡ 1( mod 72) (note that FLT only gives us 272 ≡ 1( mod 73),

which is not good enough). Now 161038 ≡ 1( mod 9), i.e. 161038 = 9s + 1 for

some natural number s. Thus

2161038 = 29s+1 = 2(29)s
≡ 2(1)s = 2( mod 73).

Finally, note that 1102 = 2·19·29. We need smallest k such that 2k ≡ 1( mod 1103).

We start with 210 = 1024 ≡ −79( mod 1103). Squaring, we get 220 ≡ 792 ≡ −377(

mod 1103). Multiply by 32 to get 225 ≡ −12064 ≡ 69( mod 1103). Now multiply

by 16 and get 229 ≡ 16 · 69 = 1104 ≡ 1( mod 1103). Since 161038 = 29 · 5553 + 1,

we see that

2161038 = 2(229)5553
≡ 2(1)5553 = 1( mod 1003).

This completes our verification that n is a pseudoprime number.

Solution to Problem 57c). We have 2730 = 2 · 3 · 5 · 7 · 13. We need to prove

that each of the following congruences holds:

n13
≡ n( mod 2), n13

≡ n( mod 3), n13
≡ n( mod 5), n13

≡ n( mod 7), n13
≡ n( mod 13).

Clearly n13 ≡ n( mod 2).

Fermat’s Little Theorem tealls us that n3 ≡ n( mod 3). Raising both sides to

the third power yields n9 ≡ n3 ≡ n( mod 3). We also have n4 ≡ n2( mod 3), and

multiplying the last 2 congruences gives us n13 ≡ n3 ≡ n( mod 3).

By FLT, by have n5 ≡ n( mod 5). Multiplying both sides by n4, we have

n9 ≡ n5 ≡ n( mod 5). Multiplying again by n4, we have n13 ≡ n5 ≡ n( mod 5).

By FLT, n7 ≡ n( mod 7). Multiplying by n6, we get n13 ≡ n7 ≡ n( mod 7).
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Finally, n13 ≡ n( mod 13) is a consequence of FLT for the prime 13.

Solution to Problem 68 c) and d). c) It is easy to see that φ(14) = 6. By Euler’s

Theorem, 36 ≡ 1( mod 14). Now 1000000 ≡ 4( mod 6), i.e. 1000000 = 6s + 4 for

some natural number s. Thus

31000000 = 34
· (36)s

≡ 34(1)s = 81 ≡ 11( mod 14).

d) Again, it is easy to see that φ(26) = 12. Also 99 ≡ −5( mod 26). Now 999999 =

3 · 333333 = 3(4s + 1) = 12s + 3 for some natural number s. Thus

99999999
≡ (−5)12s+3 = (−5)3

· (512)s
≡ −125 ≡ 5( mod 26).

We used here Euler’s theorem, which tells us that 512 ≡ 1( mod 26).

Solution to Problem 72. a) Note that 72 = 8 · 9. If n is relatively prime to 72,

then it is relatively prime to both 8 and 9. Note that φ(8) = 4 and φ(9)=6. By

Euler’s theorem, n4 ≡ 1( mod 8) and n6 ≡ 1( mod 9). Raising the first congruence

to the third power, and suqaring the second we get

n12
≡ 1( mod 8) and n12

≡ 1( mod 9).

These two congruences together are equivalent to n12 ≡ 1 mod (72).

b) Suppose that n12 ≡ 1( mod m) for every n relatively prime to m. We may write

m = 2em1 for some odd integer m1, where e = e2(m). Since 2 and m1 are relatively

prime, the Chinese remainder theorem tells us that there is an integer n such that

n ≡ 3( mod 2e) and n ≡ 1( mod m1). Clearly any such n is relatively prime to

m. Since n12 ≡ 1( mod m), we have n12 ≡ 1( mod 2e). But n ≡ 3( mod 2e), so

312 ≡ 1( mod 2e). Now, 312 − 1 = (33 − 1)(33 + 1)(36 + 1) = 24 · (odd number). It

follws that e ≤ 4.

Again by the Chinese remainder theorem, there is an integer k such that

k ≡ 1( mod 2) and n ≡ 2( mod m1).

Clearly k is relatively prime to m. Thus k12 ≡ 1( mod m), so also k12 ≡ 1(

mod m1). Since k ≡ 2( mod m1), we conclude that 212 ≡ 1( mod m1)). In other

words, m1 divides 212 − 1 = (23 − 1)(23 + 1)(26 + 1) = 7 · 9 · 65 = 32 · 5 · 7 · 13.
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We proved that any m with the required property must divide the number 24 ·33 ·

5·7·13. Using the same method as in part a), it is easy to show that m = 24·33·5·7·13

has the property that n12 ≡ 1( mod m) for every n relatively prime to m (just note

that φ(13) = 12, φ(7) = 6 = φ(9), φ(5) = 4 and that n4 − 1 = (n − 1)(n + 1)(n2 + 1)

is divisible by 24 for any odd n, as each factor is even and one of n − 1, n + 1 is

divisible by 4).

The largest number m such that n12 ≡ 1( mod m) for every m relatively prime

to m is threfore m = 24 · 33 · 5 · 7 · 13 = 65520.
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