Homework 6, solutions

Solution to Problem 47. a) Wilson's Theorem tells us that

$$(p-1)! \equiv -1 \pmod{p}.$$

Now, in the product $1 \cdot 2 \cdot 3 \dots (p-1)$ we can pair 1 and p-1, 2 and p-2, 3 and p-3, ..., $\frac{p-1}{2}$ and $p-\frac{p-1}{2} = \frac{p+1}{2}$ to get

$$(p-1)! = [1 \cdot (p-1)][2(p-2)][3(p-3)] \dots \left[\frac{p-1}{2} \cdot (p-\frac{p-1}{2})\right]$$

Since $p - k \equiv -k \pmod{p}$, we get

$$(p-1)! \equiv [1 \cdot (-1)][2(-2)][3(-3)] \dots \left[\frac{p-1}{2} \cdot (-\frac{p-1}{2})\right] = (-1)^{(p-1)/2} \left[(\frac{p-1}{2})!\right]^2$$

Thus, by Wilson's theorem, we get

$$(-1)^{(p-1)/2} \left[\left(\frac{p-1}{2}\right)! \right]^2 \equiv -1 \pmod{p}.$$

Multiplying both sides by $(-1)^{(p-1)/2}$ we have

$$\left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv (-1)^{1+(p-1)/2} = (-1)^{(p+1)/2} (\mod p).$$

When $p \equiv 1 \pmod{4}$ then $(-1)^{(p+1)/2} = -1$ so $x = (\frac{p-1}{2})!$ satisfies $x^2 \equiv -1 \pmod{p}$. This shows part b).

When $p \equiv 3 \pmod{4}$ then $(-1)^{(p+1)/2} = 1$ so $x = (\frac{p-1}{2})!$ satisfies $x^2 \equiv 1 \pmod{p}$. This shows part c).

Solution to Problem 48. Note that when k varies over all odd numbers between 1 and p-1 then p-k varies over all even numbers form p-1 to 1. Thus

$$(p-1)! = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2) \cdot (p-1)(p-3)(p-5) \cdot \ldots \cdot (p-(p-2)) \equiv$$

$$\equiv 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2)(-1)(-3)(-5) \ldots (-(p-2)) = (-1)^{(p-1)/2} (1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2))^2 (\mod p).$$

Using Wilson's Theorem, we get

$$(-1)^{(p-1)/2} (1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2))^2 \equiv -1 \pmod{p}$$

and, as in problem 47, this is the same as

$$(1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2))^2 \equiv (-1)^{(p+1)/2} (\mod p).$$

Solution to Problem 55. Let $n = 2 \cdot 73 \cdot 1103 = 161038$. Note that 2, 73, and 1103 are prime numbers. We need to show that $2^n \equiv 2 \pmod{n}$, which is equivalent to $2^n \equiv 2 \pmod{2}$, $2^n \equiv 2 \pmod{73}$, and $2^n \equiv 2 \pmod{1103}$. The first congruence is clear. Unfortunately, to show the other congruences, we need a bit more than just Fermat's Little Theorem. We have $2^6 = 64 \equiv -9 \pmod{73}$. Multiplying by 8, we get $2^9 \equiv -72 \equiv 1 \pmod{72}$ (note that FLT only gives us $2^{72} \equiv 1 \pmod{73}$), which is not good enough). Now 161038 $\equiv 1 \pmod{9}$, i.e. 161038 = 9s + 1 for some natural number s. Thus

$$2^{161038} = 2^{9s+1} = 2(2^9)^s \equiv 2(1)^s = 2(\mod 73).$$

Finally, note that $1102 = 2 \cdot 19 \cdot 29$. We need smallest k such that $2^k \equiv 1 \pmod{1103}$. We start with $2^{10} = 1024 \equiv -79 \pmod{1103}$. Squaring, we get $2^{20} \equiv 79^2 \equiv -377 \pmod{1103}$. Multiply by 32 to get $2^{25} \equiv -12064 \equiv 69 \pmod{1103}$. Now multiply by 16 and get $2^{29} \equiv 16 \cdot 69 = 1104 \equiv 1 \pmod{1103}$. Since $161038 = 29 \cdot 5553 + 1$, we see that

$$2^{161038} = 2(2^{29})^{5553} \equiv 2(1)^{5553} = 1 \pmod{1003}.$$

This completes our verification that n is a pseudoprime number.

Solution to Problem 57c). We have $2730 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$. We need to prove that each of the following congruences holds:

 $n^{13} \equiv n \pmod{2}, n^{13} \equiv n \pmod{3}, n^{13} \equiv n \pmod{5}, n^{13} \equiv n \pmod{7}, n^{13} \equiv n \pmod{13}.$

Clearly $n^{13} \equiv n \pmod{2}$.

Fermat's Little Theorem tealls us that $n^3 \equiv n \pmod{3}$. Raising both sides to the third power yields $n^9 \equiv n^3 \equiv n \pmod{3}$. We also have $n^4 \equiv n^2 \pmod{3}$, and multiplying the last 2 congruences gives us $n^{13} \equiv n^3 \equiv n \pmod{3}$.

By FLT, by have $n^5 \equiv n \pmod{5}$. Multiplying both sides by n^4 , we have $n^9 \equiv n^5 \equiv n \pmod{5}$. Multiplying again by n^4 , we have $n^{13} \equiv n^5 \equiv n \pmod{5}$.

By FLT, $n^7 \equiv n \pmod{7}$. Multiplying by n^6 , we get $n^{13} \equiv n^7 \equiv n \pmod{7}$.

Finally, $n^{13} \equiv n \pmod{13}$ is a consequence of FLT for the prime 13.

Solution to Problem 68 c) and d). c) It is easy to see that $\phi(14) = 6$. By Euler's Theorem, $3^6 \equiv 1 \pmod{14}$. Now $1000000 \equiv 4 \pmod{6}$, i.e. 1000000 = 6s + 4 for some natural number s. Thus

$$3^{1000000} = 3^4 \cdot (3^6)^s \equiv 3^4(1)^s = 81 \equiv 11 \pmod{14}.$$

d) Again, it is easy to see that $\phi(26) = 12$. Also $99 \equiv -5 \pmod{26}$. Now $999999 = 3 \cdot 333333 = 3(4s + 1) = 12s + 3$ for some natural number s. Thus

$$99^{999999} \equiv (-5)^{12s+3} = (-5)^3 \cdot (5^{12})^s \equiv -125 \equiv 5 \pmod{26}.$$

We used here Euler's theorem, which tells us that $5^{12} \equiv 1 \pmod{26}$.

Solution to Problem 72. a) Note that $72 = 8 \cdot 9$. If *n* is relatively prime to 72, then it is relatively prime to both 8 and 9. Note that $\phi(8) = 4$ and $\phi(9)=6$. By Euler's theorem, $n^4 \equiv 1 \pmod{8}$ and $n^6 \equiv 1 \pmod{9}$. Raising the first congruence to the third power, and sugaring the second we get

$$n^{12} \equiv 1 \pmod{8}$$
 and $n^{12} \equiv 1 \pmod{9}$.

These two congruences together are equivalent to $n^{12} \equiv 1 \mod (72)$.

b) Suppose that $n^{12} \equiv 1 \pmod{m}$ for every *n* relatively prime to *m*. We may write $m = 2^e m_1$ for some odd integer m_1 , where $e = e_2(m)$. Since 2 and m_1 are relatively prime, the Chinese remainder theorem tells us that there is an integer *n* such that $n \equiv 3 \pmod{2^e}$ and $n \equiv 1 \pmod{m_1}$. Clearly any such *n* is relatively prime to *m*. Since $n^{12} \equiv 1 \pmod{m}$, we have $n^{12} \equiv 1 \pmod{2^e}$. But $n \equiv 3 \pmod{2^e}$, so $3^{12} \equiv 1 \pmod{2^e}$. Now, $3^{12} - 1 = (3^3 - 1)(3^3 + 1)(3^6 + 1) = 2^4 \cdot (\text{odd number})$. It follows that $e \leq 4$.

Again by the Chinese remainder theorem, there is an integer k such that

$$k \equiv 1 \pmod{2}$$
 and $n \equiv 2 \pmod{m_1}$.

Clearly k is relatively prime to m. Thus $k^{12} \equiv 1 \pmod{m}$, so also $k^{12} \equiv 1 \pmod{m}$, so also $k^{12} \equiv 1 \pmod{m_1}$. mod m_1). Since $k \equiv 2 \pmod{m_1}$, we conclude that $2^{12} \equiv 1 \pmod{m_1}$. In other words, m_1 divides $2^{12} - 1 = (2^3 - 1)(2^3 + 1)(2^6 + 1) = 7 \cdot 9 \cdot 65 = 3^2 \cdot 5 \cdot 7 \cdot 13$. We proved that any m with the required property must divide the number $2^4 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13$. Using the same method as in part a), it is easy to show that $m = 2^4 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13$ has the property that $n^{12} \equiv 1 \pmod{m}$ for every n relatively prime to m (just note that $\phi(13) = 12$, $\phi(7) = 6 = \phi(9)$, $\phi(5) = 4$ and that $n^4 - 1 = (n-1)(n+1)(n^2+1)$ is divisible by 2^4 for any odd n, as each factor is even and one of n - 1, n + 1 is divisible by 4).

The largest number m such that $n^{12} \equiv 1 \pmod{m}$ for every m relatively prime to m is threfore $m = 2^4 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13 = 65520$.