Homework 7

due on Wednesday, February 21

Read section 5.1, 5.2 in the book. Solve problems 4, 7, 8, 13, 19a) in Chapter 5. Also solve problem 58 in Chapter 2 and the following problems.

Problem 1. Let p be an odd prime number and b a primitive root modulo p.

- a) Prove that $b^{(p-1)/2} \equiv -1 \pmod{p}$. Conclude that $-b \equiv b^{(p+1)/2} \pmod{p}$.
- b) Show that the congruence $x^2 \equiv b^k \pmod{p}$ is solvable if and only if k is even. Part a) may be useful for problem 13.

Problem 2. We proved that if gcd(m, n) = 1 then $\phi(mn) = \phi(m)\phi(n)$ by showing that the map $U_{mn} \longrightarrow U_m \times U_n$ sending $a \in U_{mn}$ to the pair $(a \pmod{m}, a \pmod{n})$ is a bijection. Verify "by hand" that this is indeed a bijection when m = 3, n = 7.