Homework 7

due on Wednesday, February 21

Read section 5.1, 5.2 in the book. Solve problems 4, 7, 8, 13, 19a) in Chapter 5. Also solve problem 58 in Chapter 2 and the following problems.

Problem 1. Let p be an odd prime number and b a primitive root modulo p.
a) Prove that $b^{(p-1) / 2} \equiv-1(\bmod p)$. Conclude that $-b \equiv b^{(p+1) / 2}(\bmod p)$.
b) Show that the congruence $x^{2} \equiv b^{k}(\bmod p)$ is solvable if and only if k is even. Part a) may be useful for problem 13.

Problem 2. We proved that if $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$ by showing that the map $U_{m n} \longrightarrow U_{m} \times U_{n}$ sending $a \in U_{m n}$ to the pair $(a(\bmod m), a($ $\bmod n)$) is a bijection. Verify "by hand" that this is indeed a bijection when $m=3$, $n=7$.

