Homework 7, solutions

Problem 1. Let p be an odd prime number and b a primitive root modulo p.
a) Prove that $b^{(p-1) / 2} \equiv-1(\bmod p)$. Conclude that $-b \equiv b^{(p+1) / 2}(\bmod p)$.
b) Show that the congruence $x^{2} \equiv b^{k}(\bmod p)$ is solvable if and only if k is even.

Solution. a) Note that

$$
\left[b^{(p-1) / 2}\right]^{2}=b^{p-1} \equiv 1(\quad \bmod p) .
$$

Thus $b^{(p-1) / 2}$ is a solution of the congruence $x^{2} \equiv 1(\bmod p)$. This congruence has only two solutions: 1 and -1 . Thus $b^{(p-1) / 2} \equiv \pm 1(\bmod p)$. Since b is a primitive root modulo p, we can not have $b^{(p-1) / 2} \equiv 1(\bmod p)$. It follows that $b^{(p-1) / 2} \equiv-1$ ($\bmod p)$. Multiplying both sides of this congruence by b, we get

$$
b^{(p+1) / 2} \equiv-b(\quad \bmod p)
$$

b) If $k=2 l$ is even then $x=b^{l}$ satisfies the congruence $x^{2} \equiv b^{k}(\bmod p)$. Conversely, suppose that $a^{2} \equiv b^{k}(\bmod p)$. Then

$$
\left(b^{k}\right)^{(p-1) / 2} \equiv\left(a^{2}\right)^{(p-1) / 2}=a^{p-1} \equiv 1(\quad \bmod p) .
$$

Since b is a primitive root modulo p and $b^{k(p-1) / 2} \equiv 1(\bmod p)$, we have $(p-1) \mid k(p-1) / 2$. Canceling $(p-1) / 2$, we get $2 \mid k$, i.e. k is even.

Solution to Problem 4. Suppose that b is the inverse of a modulo m. Thus $a b \equiv 1$ ($\bmod m$). It follows that for any positive integer t we have $a^{t} b^{t} \equiv 1(\bmod m)$. Thus $a^{t} \equiv 1(\bmod m)$ if and only if $b^{t} \equiv 1(\bmod m)$. In particular, a and b have the same order modulo m.

Solution to Problem 7. a) Suppose that $\operatorname{ord}_{m}(a)=x y$ with x, y positive integers. Then

$$
\operatorname{ord}_{m}\left(a^{x}\right)=\frac{x y}{\operatorname{gcd}(x y, x)}=y
$$

b) Suppose that $\operatorname{ord}_{m}(a)=m-1$. Then $m-1 \mid \phi(m)$. But $\phi(m)<m$ so we must have $\phi(m)=m-1$. This can happen only when m is a prime number. In fact, if
$m=x y$ is not a prime, then x and m are two distinct positive integers which are not relatively prime to m and are $\leq m$. Thus $\phi(m) \leq m-2$ in this case.

Solution to Problem 8. Note that $a^{n} \equiv 1\left(\bmod a^{n}-1\right)$. Also, for $0<k<n$ we can not have $a^{k} \equiv 1\left(\bmod a^{n}-1\right)$. It follows that $\operatorname{ord}_{a^{n}-1} a=n$. In particular, $n \mid \phi\left(a^{n}-1\right)$, as order of any element modulo m divides $\phi(m)$.

Solution to Problem 13. In problem 1a) we proved that $-r \equiv r^{(p+1) / 2}(\bmod p)$. Thus $-r$ and $r^{(p+1) / 2}$ have the same order modulo p. Now

$$
\operatorname{ord}_{p}\left(r^{(p+1) / 2}\right)=\frac{p-1}{\operatorname{gcd}(p-1,(p+1) / 2)}
$$

Note that any common factor of $p-1$ and $(p+1) / 2$ is also a common factor of $p-1$ and $p+1$, so it is either 1 or 2 .

When $p \equiv 1(\bmod 4)$ then $(p+1) / 2$ is odd so $p-1$ and $(p+1) / 2$ are relatively prime. Thus $-r$ has order $p-1$ in this case, i.e. $-r$ is a primitive root modulo p. This proves part a)

When $p \equiv 3(\bmod 4)$ then $(p+1) / 2$ is even, so $\operatorname{gcd}(p-1,(p+1) / 2)=2$. Thus $-r$ has order $(p-1) / 2$ in this case. This proves part b).

Solution to Problem 19a). The only divisors of $q-1=2 p$ are $1,2, p, 2 p$. The order of -4 modulo q divides $q-1$, so it is one of $1,2, p, 2 p$. If the order was 1 we would have $-4 \equiv 1(\bmod q)$, i.e. $q \mid 5$, so $q=5$. However, 5 is not of the form $2 p+1$ for an odd prime p.

Similarly, if $\operatorname{ord}_{q}(-4)=2$ then we would have $(-4)^{2} \equiv 1(\bmod q)$, i.e. $q \mid 15$. This would imply that q is either 5 or 3 , which is not possible.

It follows that the order of -4 modulo q is either p or $2 p$. Since p is odd, we have

$$
(-4)^{p}=-2^{2 p}=-2^{q-1} \equiv-1(\quad \bmod q)
$$

Thus p is not the order of -4 modulo q and therefore the order of -4 must be equal to $2 p$. Thus -4 is a primitive root modulo q.

Solution to Problem 58. a) Suppose that $a^{p} \equiv b^{p}(\bmod p)$. Since $a^{p} \equiv a($ $\bmod p)$ and $b^{p} \equiv b(\bmod p)$ by Fermat's Little Theorem, we conclude that

$$
a \equiv a^{p} \equiv b^{p} \equiv b(\quad \bmod p)
$$

b) Note that

$$
a^{p}-b^{p}=(a-b)\left(a^{p-1}+a^{p-2} b+\ldots+a b^{p-2}+b^{p-1}\right)=(a-b) \sum_{k=0}^{p-1} a^{k} b^{p-1-k} .
$$

By part a) we know that $a \equiv b(\bmod p)$. Thus $a^{k} \equiv b^{k}(\bmod p)$ and $a^{k} b^{p-1-k} \equiv b^{k} b^{p-1-k}=b^{p-1}(\bmod p)$, for $k=0,1, \ldots, p-1$. Therefore,

$$
\sum_{k=0}^{p-1} a^{k} b^{p-1-k} \equiv \sum_{k=0}^{p-1} b^{p-1}=p b^{p-1} \equiv 0(\bmod p)
$$

Thus, in the product $(a-b)\left(a^{p-1}+a^{p-2} b+\ldots+a b^{p-2}+b^{p-1}\right)$ both factors are divisible by p, so the product, which is $a^{p}-b^{p}$, is divisible by p^{2}, i.e.

$$
a^{p} \equiv b^{p}\left(\quad \bmod p^{2}\right)
$$

Remark. The assumption that a and b are not divisible by p is not needed for this problem. If p divides one of them then p divides both of them and the result is obvious in this case.

Problem 2. We proved that if $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$ by showing that the map $U_{m n} \longrightarrow U_{m} \times U_{n}$ sending $a \in U_{m n}$ to the pair $(a(\bmod m), a($ $\bmod n)$) is a bijection. Verify "by hand" that this is indeed a bijection when $m=3$, $n=7$.

Solution. We have $U_{21}=\{1,2,4,5,8,10,11,13,, 16,17,19,20\}$ and $U_{3} \times U_{7}=$ $\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2.6)\}$. Our function works as follows:
$1 \mapsto(1,1)$
$2 \mapsto(2,2)$
$4 \mapsto(1,4)$
$5 \mapsto(2,5)$
$8 \mapsto(2,1)$
$10 \mapsto(1,3)$
$11 \mapsto(2,4)$
$13 \mapsto(1,6)$
$16 \mapsto(1,2)$
$17 \mapsto(2,3)$
$19 \mapsto(1,5)$
$20 \mapsto(2,6)$

