Homework 8, solutions

Solution to 25d). First we find a primitive root modulo 17. It is not hard to see that that 3 is a primitive root modulo 17. Indeed, the order of 3 modulo 17 divides 16. We have $3^{2} \equiv-8=-2^{3}(\bmod 17)$ so $3^{8} \equiv 2^{12}=\left(2^{4}\right)^{3} \equiv-1(\bmod 17)$. It follows that order of 3 modulo 17 does not divide 8 , hence it must be equal to 16 .

Now $3^{16}-1=(3-1)(3+1)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)$ is not divisible by 17^{2} so 3 is a primitive root modulo every power of 17 (if $3^{16}-1$ was divisible by 17^{2}, we would replace 3 by $3+17=20$). Since 3 is odd, it is also a primitive root modulo $2 \cdot 17^{m}$ (if it was even, we would replace it by $3+16^{n}$ which would be odd).

Here is a different solution. It is not hard to see that 6 is also a primitive root modulo 17 and 17^{2} does not divide $6^{16}-1$. Thus 6 is a primitive root modulo any power of 17 . However 6 is even, so to get a primitive root modulo $2 \cdot 17^{m}$ we use $6+17^{m}$, which is odd.

Finally, let us remark that if p is an odd prime there is always an odd integer a which is a primitive root modulo p and such that $a^{p-1}-1$ is not divisible by p^{2}. Such a is a primitive root modulo every power of p and modulo $2 p^{m}$ for every m.

Problem 28a). When $m=2$ the result is obvious. Assume now that $m>2$, so $\phi(m)$ is even. Suppose that a is a primitive root modulo m. Then $a^{\phi(m) / 2} \equiv-1(\bmod m)$. Indeed, we have $-1 \equiv a^{k}(\bmod m)$ for some (unique) k such that $0 \leq k<\phi(m)$. But then $a^{2 k} \equiv 1(\bmod m)$, so $\phi(m)$ divides $2 k$ and therefore $\phi(m) / 2$ divides k. The only positive k less than $\phi(m)$ and divisible by $\phi(m) / 2$ is $k=\phi(m) / 2$. We proved the following:

If a is a primitive root modulo $m>2$ then $\operatorname{ind}_{a}(-1)=\phi(m) / 2$.
Since a is a primitive root modulo m, the numbers $a^{0}, a^{1}, \ldots, a^{\phi(m)-1}$ taken modulo m give all the residues modulo m which are relatively prime to m. Thus the product of all the positive integers less than m and relatively prime to m is congruent modulo m to the product

$$
\begin{gathered}
a^{0} a^{1} \ldots a^{\phi(m)-1}=a^{1+2+\ldots+(\phi(m)-1)}=a^{(\phi(m)-1) \phi(m) / 2}= \\
=\left(a^{\phi(m) / 2}\right)^{\phi(m)-1} \equiv(-1)^{\phi(m)-1}=-1(\bmod m)
\end{gathered}
$$

(in the last step we used the fact that $\phi(m)-1$ is odd.)
Solution to Problem 32c). We know that 3 is a primitive root modulo 17. Thus x is a solution to $8 x^{12} \equiv b(\bmod 17)$ if and only if

$$
\operatorname{ind}_{3}(8)+12 \operatorname{ind}_{3}(x) \equiv \operatorname{ind}_{3}(b)(\bmod 16) .
$$

Now, since $8 \equiv-9(\bmod 17)$, we have $\operatorname{ind}_{3}(8)=\operatorname{ind}_{3}\left(-3^{2}\right)=\operatorname{ind}_{3}(-1)+\operatorname{ind}_{3}\left(3^{2}\right)=$ $8+2=10$.

It follows that our original congruence is solvable if and only if the congruence $10+12 y \equiv \operatorname{ind}_{3}(b)(\bmod 16)$ is solvable, i.e. when $12 y \equiv \operatorname{ind}_{3}(b)-10(\bmod 16)$ is solvable. This happens if and only if $\operatorname{gcd}(12,16)=4$ divides $\operatorname{ind}_{3}(b)-10$. Among the numbers $0,1, \ldots, 15$ only $2,6,10,14$ have this property. Thus our congruence is solvable if and only if $\operatorname{ind}_{3}(b)$ is one of $2,6,10,14$ modulo 16 . Note that $3^{4} \equiv-4$ (mod 17). Thus

$$
\begin{gathered}
3^{6}=3^{2} \cdot 3^{4} \equiv 9(-4)=-36 \equiv 15 \equiv-2(\bmod 17) \\
3^{10}=3^{6} \cdot 3^{4} \equiv(-2)(-4)=8(\bmod 17)
\end{gathered}
$$

and

$$
3^{14}=3^{10} \cdot 3^{4} \equiv 8(-4)=-32 \equiv 2(\bmod 17)
$$

Thus our congruence is solvable if and only if b is congruent to one of $2,8,915$ modulo 17 .

Solution to problem 35. a) Since s, r are primitive roots modulo a prime p, we have $r \equiv s^{\operatorname{ind}_{s}(r)}(\bmod p)$. Thus

$$
a \equiv r^{\operatorname{ind}_{r}(a)} \equiv\left(s^{\operatorname{ind}_{s}(r)}\right)^{\operatorname{ind}_{r}(a)}=s^{\operatorname{ind}_{s}(r) \operatorname{ind}_{r}(a)}(\bmod p)
$$

This means that $\operatorname{ind}_{s}(a) \equiv \operatorname{ind}_{s}(r) \operatorname{ind}_{r}(a)(\bmod (p-1))($ as $\phi(p)=p-1)$.
b) We have proved in the solution to Problem 28a) that if $m>2$ and a is a primitive root modulo m then $\operatorname{ind}_{a}(-1) \equiv \phi(m) / 2(\bmod \phi(m))$. Thus

$$
\operatorname{ind}_{r}(p-a) \equiv \operatorname{ind}_{r}(-a) \equiv \operatorname{ind}_{r}(-1)+\operatorname{ind}_{r}(a) \equiv \frac{p-1}{2}+\operatorname{ind}_{r}(a)(\bmod (p-1))
$$

Solution to Problem 38. Since the set $\left\{1^{n}, 2^{n}, \ldots,(p-1)^{n}\right\}$ contains $p-1$ numbers, each relatively prime to p, it suffices to show that no two of these numbers
are congruent modulo p. Let r be a primitive root modulo p and $1 \leq a, b<p$. Then $a^{n} \equiv b^{n}(\bmod p)$ if and only if $\operatorname{ind}_{r}\left(a^{n}\right) \equiv \operatorname{ind}_{r}\left(b^{n}\right)(\bmod ((p-1))$, i.e. if and only if $n \operatorname{ind}_{r}(a) \equiv n \operatorname{ind}_{r}(b)(\bmod ((p-1))$. Since n is relatively prime to $p-1$, the last congruence is equivalent to $\operatorname{ind}_{r}(a) \equiv \operatorname{ind}_{r}(b)(\bmod ((p-1))$ which is the same as $a \equiv b(\bmod p)$. This proves that our numbers are indeed all different modulo p and therefore thy form a reduced residue system modulo p.

