
Quizzes for Elementary Number Theory

QUIZ 1. Use Euclid’s algorithm to compute gcd(803, 154) and find integers λ, µ

such that gcd(803, 154) = λ · 803 + µ · 154. Show all your work.

Solution: Let us recall Euclid’s algorithm. To find gcd(a, b) set a1 = a, b1 = b and

apply the following procedure: given an, bn, if bn = 0 then stop: an = gcd(a, b).

Otherwise, use division algorithm to write an = knbn + rn with 0 ≤ rn < |bn|, set

an+1 = bn, bn+1 = rn, and repeat the procedure. It is easy to see that for any m

(

am+1

bm+1

)

=

(

0 1

1 −km

)(

am

bm

)

.

Thus
(

am+1

bm+1

)

=

(

0 1

1 −km

)(

0 1

1 −km−1

)

. . .

(

0 1

1 −k1

)(

a

b

)

.

We apply Euclid’s algorithm: We have

a1 = 803 = 5 · 154 + 33 = 5b1 + 33

a2 = 154 = 4 · 33 + 22 = 4b2 + 22

a3 = 33 = 1 · 22 + 11 = 1 · b3 + 11

a4 = 22 = 2 · 11 + 0 = 2b4 + 0

a5 = 11, b5 = 0

Thus gcd(803, 154) = a5 = 11.

We can now work ”backwards” to find

11 = 33−22 = 33−(154−4·33) = 5·33−154 = 5(803−5·154)−154 = 5·803−26·154.

so λ = 6, µ = −26 work.
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Alternatively, we can use the matrix interpretation of the algorithm, which yields:

(

11

0

)

=

(

0 1

1 −2

)(

0 1

1 −1

)(

0 1

1 −4

)(

0 1

1 −5

)(

803

154

)

.

Multiplying the matrices, we get

(

11

0

)

=

(

5 −26

−14 73

)(

803

154

)

.

It follows that 11 = 5 · 803 − 26 · 154, so λ = 6, µ = −26 work.

QUIZ 2. a) State Euclid’s Lemma.

b) Define Mersenne primes.

c) Let p be a prime and n an integer such that p3|n4. Prove that p2|n.

Solution: a) Euclid’s Lemma. If p is a prime number and m, n are integers such

that p|mn then either p|m or p|n.

b) Mersenne primes are prime numbers of the form 2p − 1 for some prime p.

c) We will use the function ep. Since p4|n3, we have ep(p4) ≤ ep(n3). Note that

ep(p4) = 4 and ep(n3) = 3ep(n). Thus 4 ≤ 3ep(n). It follows that ep(n) > 1 and

since it is an integer, we have ep(n) ≥ 2. This means that p2|n.

Second method. We have p|n4. By Euclid’s Lemma, p|n. Write n = pm. Then

(pm)3 = p4k for some integer k. Thus m3 = pk. It follows that p|m3 and therefore

p|m, again by Euclid’s Lemma. Thus m = pm1 for some integer m1 and n = pm =

p2m1. Hence p2|n.

QUIZ 3.a) Define the inverse of an integer a modulo m. When does the inverse

exist?

b) Find the inverse of 23 modulo 67.

c) Find all solutions to the congruence 9x ≡ 6( mod 15).

Solution: a) An inverse of a modulo m is any integer b such that ab ≡ 1( mod m).

It exists if and only if gcd(a, m) = 1. When it exists, it is unique modulo m.
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b) We use the Euclidean algorithm:

67 = 2 · 23 + 21, 23 = 1 · 21 + 2, 21 = 10 · 2 + 1, 2 = 2 · 1 + 0.

It follows that

1 = 21−10·2 = 21−10(23−21) = 11·21−10·23 = 11(67−2·23)−10·23 = −32·23+11·67.

Thus −32 ·23 ≡ 1( mod 67). As −32 ≡ 35( mod 67), 35 is an inverse of 23 modulo

67.

c) Clearly gcd(9, 15) = 3. Since 3|6, the congrunce will have 3 solutions modulo 15.

We first solve the congruence 3x ≡ 2( mod 5). As 2 is the inverse of 3 modulo 5,

we have x ≡ 2 · 3x ≡ 4( mod 5). Thus the solutions to our original congruence are

4, 4 + 5 = 9, and 9 + 5 = 14.

QUIZ 4. a) Define the Euler function.

b) State Fermat’s Little Theorem.

c) Prove that n7 ≡ n( mod 21) for every integer n.

Solution: a) The Euler function φ assigns to each positive integer n the number

φ(n) of positive integers which are relatively prime to n and smaller or equal than

n. In other words, φ(n) is the number of elements in the set i

Un = {k : 1 ≤ k ≤ n and gcd(k, n) = 1}.

b) Fermat’s Little Theorem: Let p be a prime number. If a is an integer and

p ∤ a then ap−1 ≡ 1( mod p).

An equivalent, but often useful, way of stating FLT is

Fermat’s Little Theorem: Let p be a prime number. Then ap ≡ a( mod p) for

any integer a.

c) We use the following simple, but useful, observation. If gcd(m, n) = 1 then the

congruence a ≡ b( mod mn) is equivalent to the pair of congruences

a ≡ b( mod m) and a ≡ b( mod n) (in other words, an integer is divisible by mn

if and only if it is divisible by both m and n).
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Since 21 = 3 · 7 and gcd(3, 7) = 1, it suffices to show that for every integer n

we have n7 ≡ n( mod 7) and n7 ≡ n( mod 3). The first congruence is true by

Fermat’s Little Theorem for the prime 7.

By FLT for the prime 3 we have n3 ≡ n( mod 3). Squaring each side of this

congruence and then multiplying both sides by n we get

n7 = n(n3)2 ≡ n · n2 = n3 ≡ n( mod 3).

This completes our proof.

Remark. Note that n7 ≡ n( mod 2) for any n, so we have a stronger congruence

n7 ≡ n( mod 42).

QUIZ 5. a) Define primitive root modulo m.

b) a is a primitive root modulo 17.

1. What is ord17a12?

2. What is a8?

Solution. a) An integer a is a primitive root modulo m if gcd(a, m) = 1 and the

order of a modulo m is equal to φ(m). In other words, φ(m) is the smallest positive

integer k such thaat ak ≡ 1( mod m).

b) Recall the following formula:

ordm(ak) =
ordm(a)

gcd(ordm(a), k)
.

Since 17 is a prime, we have φ(17) = 16 and ord17(a) = 16. Thus

ord17(a
12) =

16

gcd(16, 12)
= 4.

This answers part 1. For part 2, note that

(a8)2 = a16 ≡ 1( mod 17).

Thus a8 is a solution to x2 ≡ 1( mod 17). The last congruence has only two

solutions : 1 and −1 (this is true for any prime modulus). Since a is a primitive

root modulo 17, a8 is not 1 modulo 17. Thus a8 ≡ −1( mod 17).
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QUIZ 6. a) State Lagrange’s theorem (about polynomial congruences).

b) When does a primitive root modulo m exist?

c) Is 7 a third power residue modulo 13?

Solution. a) Lagrange’s Theorem. Let p be a prime number and f(x) = akxk +

ak−1x
k−1 + . . . + a0 a polynomial with integer coefficients such that p ∤ ak. Then the

congruence f(x) ≡ 0( mod p) has at most k different solutions modulo p.

b) A primitive root modulo m exists if and only if m is one of the numbers 1, 2, 4, pk, 2pk,

where p is an odd prime and k a positive integer.

c) Recall the following theorem: Suppose that there is a primitive root modulo m.

An integer a is a k-th power residue modulo m (i.e. the congurnce xk ≡ a( mod m)

is solvable) if and only if

aφ(m)/gcd(k,φ(m)) ≡ 1( mod m)

.

Since 13 is a prime, a primitive root modulo 13 exists. We apply the theorem to the

case m = 13, k = 3, a = 7. Thus φ(m) = 12 and φ(m)/ gcd(k, φ(m)) = 4. However

74 = 492 ≡ (−3)2 = 9 6≡ 1( mod 13)

so 7 is not a third power residue modulo 13.

QUIZ 7. a) Define the Legendre’s symbol.

b) State the quadratic reciprocity.

c) 2017 is a prime number. Using Jacobi symbol computations determine whether

1006 is a square modulo 2017.

Solution. a) An integer a is called a quadratic residue modulo a prime p if p ∤ a

and a ≡ x2 (mod p) for some integer x. An integer a is called a quadratic non-

residue modulo a prime p if there is no integer x such that a ≡ x2 (mod p) . When

5



p is an odd prime then we define the Legendre symbol
(

a
p

)

as follows

(

a

p

)

=



















1 if a is a quadratic residue modulo p;

−1 if a is a quadratic non-residue modulo p;

0 if p|a.

b) Qadratic Reciprocity:

1. If p and q are distinct odd prime numbers then

(

q
p

)

=







−
(

p
q

)

if p ≡ 3 ≡ q (mod 4) ;
(

p
q

)

if at least one of p, q is ≡ 1 (mod 4) .

Equivalently,
(

p
q

)(

q
p

)

= (−1)
p−1

2

q−1

2 .

2.
(

2
p

)

=







1 if p ≡ 1, 7 (mod 8) ;

−1 if p ≡ 3, 5 (mod 8) .

Equivalently,
(

2
p

)

= (−1)
p

2
−1

8 .

3.
(

−1
p

)

=







1 if p ≡ 1 (mod 4) ;

−1 if p ≡ 3 (mod 4) .

Equivalently,
(

−1
p

)

= (−1)
p−1

2 .

Remark. Often by quadratic reciprocity one only means part 1. The other two

parts are simpler and were proved earlier.

c) We have 1006 = 2 · 503. Also, 2017 ≡ 1 (mod 8) . Thus
(

1006

2017

)

=

(

2

2017

)(

503

2017

)

=

(

503

2017

)

.

Using Jacobi symbol reciprocity and the fact that 2017 ≡ 5 (mod 503) , we have
(

503

2017

)

=

(

2017

503

)

=

(

5

503

)

=

(

503

5

)

=

(

3

5

)

=

(

5

3

)

=

(

2

3

)

= −1.

(we used the observation that in each symbol at lest one number was congruent to

1 mod 4).
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We computed that
(

1006
2017

)

= −1, hence 1006 is a quadratic non-residue modulo

2017, i.e. it is not a suqare modulo 2017.

QUIZ 8. a) Define the convolution f ∗ g of two arithmetic functions and list its

main properties.

b) Let f(n) = ⌊n/2⌋. Compute (f ∗1)(20), where 1 is the constant function 1(n) = 1

for all n.

c) Let f(n) = n. Find a closed formula for f ∗ f in terms of a function we discussed

in class.

Solution. a) Let R be a commutative ring (main examples are Z, Q, R, C). An

arithemtic R-valued function is a function f : N −→ R. By A(R) we denote the set

of all arithmetic R-valued functions. For f, g ∈ A(R) we define f + g by

(f + g)(n) = f(n) + g(n) for all positive integers n. The function f − g is defined

by (f − g)(n) = f(n) − g(n).

For f, g ∈ A(R) we define the convolution f ∗ g as follows:

(f ∗ g)(n) =
∑

d|n

f(d)g(
n

d
)

for any positive integer n, The convolution has the following properties:

1. it is commutative: f ∗ g = g ∗ f .

2. it is associative: (f ∗ g) ∗ h = f ∗ (g ∗ h).

3. it disctibutes over addition: (f + g) ∗ h = f ∗ h + g ∗ h.

4. the function δ defined by

δ(n) =







1 if n = 1

0 if n > 1.

is the identity element for convolution: f ∗ δ = f for any f .

5. the convolution of two multiplicative functions is multiplicative
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6. f is invertible under convolution (i.e. there exists g such that f ∗ g = δ) if

and only if f(1) is invertible in R. In particular, all non-zero multiplicative

functions are invertible under convolution.

7. the convolution inverse of a multiplicative function f is multiplicative, i.e. if

f ∗ g = δ then g is multiplicative.

8. if R is an integral domain (i.e. for any a, b ∈ R such that ab = 0 we have a = 0

or b = 0), then A(R) is an integral domain, i.e. if f ∗ g = 0 then f = 0 or

g = 0.

9. define 1 to be the constatnt function 1, i.e. 1(n) = 1 for all n. Clearly 1 is

multiplicative. The convolution inverse of 1 is called the Möbius function and

it is denoted bt µ. We have

µ(n) =



















1 if n = 1,

(−1)r if n = p1p2 . . . pr is a product of r distinct primes,

0 in all other cases.

10. Möbius inversion formula: if F = f ∗ 1 then f = F ∗ µ. In other words, if

F (n) =
∑

d|n f(d) for all n, then f(n) =
∑

d|n F (d)µ(n/d) for all n.

b) The positive divisors of 20 are 1, 2, 4, 5, 10, 20. Thus

(f ∗1)(20) = f(1)1(20)+f(2)1(10)+f(4)1(5)+f(5)1(4)+f(10)1(2)+f(20)1(1) =

= ⌊1/2⌋ + ⌊2/2⌋ + ⌊4/2⌋ + ⌊5/2⌋ + ⌊10/2⌋ + ⌊20/2⌋ = 20.

c) We have

f ∗ f(n) =
∑

d|n

f(d)f(n/d) =
∑

d|n

d
n

d
=
∑

d|n

n = n
∑

d|n

1 = nν(n).

Thus f ∗ f(n) = nν(n) for all n. Recall that ν = 1 ∗ 1 and ν(n) is the number of

positive divisors of n.

QUIZ 9. a) Define a finite simple continued fraction.
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b) Express
43

40
as a finite simple continued fraction.

c) Which is bigger:

1. [2, 1, 3, 4, 7, 2] or [2, 1, 3, 5, 7, 1] ?

2. [2, 1, 1, 1, 1] or [2, 1, 1, 2] ?

Solution. a) A finite simple continued fraction is an expression of the form

[k0, k1, . . . , ks] = k0 +
1

k1 +
1

k2 +
1

· · · +
1

ks

where k0 is an integer and k1, . . . , ks are positive integers.

b) We apply Euclidean algorithm to 43 and 30:

43 = 1 · 30 + 13, 30 = 2 · 13 + 4, 13 = 3 · 4 + 1, 4 = 4 · 1 + 0.

It follows that

43

30
= [1, 2, 3, 4] = 1 +

1

2 +
1

3 +
1

4

.

c) Recall the following result. Suppose that [k0, k1, . . . , ks] and [lo, l1, . . . , lt] are two

finite simple continued fractions which are not equal. Suppose there are i such

that ki 6= li and let r be the smallest such i. Say kr > lr. Then

[k0, k1, . . . , ks] > [l0, l1, . . . , lt] if r is even

and

[k0, k1, . . . , ks] < [l0, l1, . . . , lt] if r is odd.

The two continued fractions in 1. are not euqal and the first place they differ is

r = 3. Since 3 is odd, the continued fraction with bigger k3 is smaller, i.e.

[2, 1, 3, 4, 7, 2] > [2, 1, 3, 5, 7, 1].
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The two continued fractions in 2. are equal, as we know that

[k0, k1, . . . , ks] = [k0, k1, . . . , ks − 1, 1]

(and this is the only way two finite simple continued fractions can be equal).

QUIZ 10. a) Define an infinite simple continued fraction and its convergents.

b) What is the value of [2, 1, 1, 2, 1, 1, 2, 1, 1, . . .]?

c) Express
√

5 as simple countinued fraction.

Solutions. a) An infinite simple continued fraction is defined as

[k0, k1, k2, . . .] = lim
n→∞

[k0, k1, . . . , kn]

where k0, k1, . . . is an infinite sequence of integers such that k1, k2, . . . are positive.

We proved that the limit always exists and it is an irrational number. The s-th con-

vergent of [k0, k1, k2, . . .] is the value of the finite continued fraction [k0, k1, . . . , ks],

s = 0, 1, . . ..

b) Let x = [2, 1, 1, 2, 1, 1, 2, 1, 1, . . .], so x = [2, 1, 1, x]. In other words,

x = 2 +
1

1 +
1

1 +
1

x

= 2 +
1

1 +
x

x + 1

= 2 +
x + 1

2x + 1
=

5x + 3

2x + 1
.

Thus x(2x + 1) = 5x + 3, i.e. 2x2 − 4x − 3 = 0. The solutions to this quadratic

equation are (2 ±
√

10)/2. Since x > 2, we have x = (2 +
√

10)/2.

c) Rexall that if x0 =
√

5, xn+1 =
1

xn − ⌊xn⌋ and kn = ⌊xn⌋ then x0 = [k0, k1, . . .].

We have k0 = ⌊x0⌋ = 2,

x1 =
1√

5 − 2
=

√
5 + 2, k1 = ⌊x1⌋ = 4, x2 =

1

(
√

5 + 2) − 4
= x1.

We see that x1 = x2, which means that x1 = x2 = x3 = . . . and k1 = k2 = . . . = 4.

Thus √
5 = [2, 4, 4, 4, . . .].
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QUIZ 11. a) How many solutions in positive integers does the the equation

5x + 7y = 88 have?

b) Which integers are sums of two squares?

c) Express 13 · 17 as a sum of two squares.

d) Find a right-angled triangle with integral side-lengths and hypotenuse of length

29.

Solution. a) Note that gcd(5, 7) = 1. We first find u, w such that 5u + 3w = 1.

This is usually done via Euclidean algorithm, but in our case we can easily guess

that u = 3, w = −2 works. Multiplying by 88, we see thta x0 = 3 · 88 = 264,

y0 = (−2) · 88 = −176 is a solution to our equation. It follows that all solutions are

described by x = 264 + 7k, y = −176 − 5k, k ∈ Z. We want both x and y to be

positive. Now, 264 + 7k > 0 iff k > −264/7 = −375
7
. Similarly, −176 − 5k > 0 iff

k < −176/5 = −351
5
. The only integers k which satisfy

−37
5

7
< k < −35

1

5

are k = −37 and k = −36. Thus we have exactly two solutions in positive integers:

x = 264 + 7(−37) = 5, y = −176 − 5(−37) = 9

and

x = 264 + 7(−36) = 12, y = −176 − 5(−36) = 4.

b) A positive integer n is a sum of two squares if and only if every prime divisor of

n of the form 4k + 3 appears in the prime factorization of n to an even power.

c) Recall the identity (a2+b2)(c2+d2) = (ac+bd)2+(ad−bc)2. Note that 13 = 32+22

and 17 = 42 + 12. Thus

13 · 17 = (3 · 4 + 2 · 1)2 + (3 · 1 − 2 · 4)2 = 142 + 52.

We have another solution

13 · 17 = (3 · 1 + 2 · 4)2 + (3 · 4 − 2 · 1)2 = 112 + 102.
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d) The problem asks to find a Pythagorean triple of the form (a, b, 29). Since 29 is a

prime, any such triple must be primitive. We may assume b is even. Thus there are

positive, relatively prime integers m < n of different parities such that 29 = m2 +n2,

b = 2mn, a = n2 − m2. We easily find n = 5, m = 2 is the only solution, hence

a = 21, b = 20.
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