Exam 1

Problem 1. a) Define $\operatorname{gcd}(a, b)$. Using Euclid's algorithm compute $\operatorname{gcd}(889,168)$. Then find $x, y \in \mathbb{Z}$ such that $\operatorname{gcd}(889,168)=x \cdot 889+y \cdot 168$ (check your answer!).
b) Let a be an integer. Prove that $\operatorname{gcd}(3 a+5,7 a+12)=1$.

Solution: a) $\operatorname{gcd}(a, b)$ is the largest positive integer which divides both a and b. It is called the greatest common divisor of a and b.

Euclid's algorithm yields:

$$
\begin{aligned}
889 & =5 \cdot 168+49, \\
168 & =3 \cdot 49+21, \\
49 & =2 \cdot 21+7, \\
21 & =3 \cdot 7+0 .
\end{aligned}
$$

It follows that $\operatorname{gcd}(889,168)=7$. Working backwards,
$7=49-2 \cdot 21=49-2 \cdot(168-3 \cdot 49)=7 \cdot 49-2 \cdot 168=7 \cdot(889-5 \cdot 168)-2 \cdot 168=7 \cdot 889-37 \cdot 168$.
Thus $x=7, y=-37$ work.
b) Note that $3(7 a+12)+(-7)(3 a+5)=1$. Thus any common divisor of $3 a+5$ and $7 a+12$ must divide 1. It follows that $\operatorname{gcd}(3 a+5,7 a+12)=1$.

Problem 2. a) State the Chinese Remainder Theorem.
b) Find all positive integers smaller than 200 which leave remainder $1,3,4$ upon division by $3,5,7$ respectively. Show your work.

Solution: a)
Chinese Remainder Theorem: Let n_{1}, \ldots, n_{k} be pairwise relatively prime positive integers and let $N=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$. Given any integers a_{1}, \ldots, a_{k}, the system of congruences $x \equiv a_{i}\left(\bmod n_{i}\right), i=1,2, \ldots, k$, has unique solution x such that $0 \leq x<N$. Moreover, an integer y satisfies these congruences iff $N \mid(x-y)$ (so all integers satisfying the congruences are given by $x+m N, m \in \mathbb{Z}$).
b) The problem asks us to find all integers x such that $0<x<200$ and

$$
x \equiv 1(\bmod 3), x \equiv 3(\bmod 5), x \equiv 4(\bmod 7) .
$$

In order to find a solution to these congruences, we follow the algorithm. We have $N=$ $3 \cdot 5 \cdot 7=105, N_{1}=35, N_{2}=21, N_{3}=15$.

We solve $N_{1} x_{1} \equiv 1(\bmod 3)$, i.e. $2 x_{1} \equiv 1(\bmod 3)$, which has a solution $x_{1}=2$.
Next we solve $N_{2} x_{2} \equiv 3(\bmod 5)$, i.e. $x_{2} \equiv 3(\bmod 5)$, which has a solution $x_{2}=3$.
Finally, we solve $N_{3} x_{3} \equiv 4(\bmod 7)$, i.e. $x_{3} \equiv 4(\bmod 7)$, which has a solution $x_{3}=4$. A solution is given by $x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}=70+63+60=193$. The smallest positive solution is then $193-105=88$ and all solutions are given by the formula $x=88+105 m$, $m \in Z$. We get a positive solution smaller than 200 only for $m=0,1$, so 88 and 193 are the only solutions to our problem.

Problem 3. a) State Fermat's Little Theorem and Euler's Theorem.
b) Let m, n be relatively prime positive integers. Prove that

$$
m^{\phi(n)}+n^{\phi(m)} \equiv 1(\bmod m n)
$$

c) Find the remainder of 31^{2018} upon division by 36 .

Solution: a)
Fermat's Little Theorem: Let p be a prime. Then

$$
a^{p-1} \equiv 1(\bmod p)
$$

for any integer a not divisible by p. Equivalently, $a^{p} \equiv a(\bmod p)$ for any integer a.
Euler's Theorem: Let n be a positive integer. Then

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

for any integer a relatively prime to n. Here $\phi(n)$ is the number of positive integrs relatively prime to n and $\leq n$.
b) By Euler's Theorem, $m^{\phi(n)} \equiv 1(\bmod n)$. Clearly $n^{\phi(n)} \equiv 0(\bmod n)$. Thus

$$
m^{\phi(n)}+n^{\phi(n)} \equiv 1(\bmod n) .
$$

Similarly, $n^{\phi(m)} \equiv 1(\bmod m)$ and $m^{\phi(m)} \equiv 0(\bmod m)$ so

$$
m^{\phi(n)}+n^{\phi(n)} \equiv 1(\bmod m)
$$

In other words, $m^{\phi(n)}+n^{\phi(n)}-1$ is divisible by both m and n. Since m and n are relatively prime, we conclude that $m^{\phi(n)}+n^{\phi(n)}-1$ is divisible by $m n$, i.e. $m^{\phi(n)}+n^{\phi(n)} \equiv$ $1(\bmod m n)$.
c) Note that $(31,36)=1$. Thus $31^{\phi(36)} \equiv 1(\bmod 36)$ by Euler's Theorem. Now $36=$ $2^{2} \cdot 3^{2}$, so $\phi(36)=\phi\left(2^{2}\right) \phi\left(3^{2}\right)=2 \cdot 2 \cdot 3=12$. Therefore $31^{12} \equiv 1(\bmod 36)$. Observe that $2018=12 \cdot 168+2$, so

$$
31^{2018}=\left(31^{12}\right)^{168} \cdot 31^{2} \equiv 31^{2}(\bmod 36)
$$

Thus it suffices to find the remainder of 31^{2} upon division by 36 . Since $31 \equiv-5(\bmod 36)$, we have $31^{2} \equiv(-5) 2=25(\bmod 36)$. The reminder in question is therefore equal to 25 .

Problem 4. Find all solutions to the following congruences
a) $18 x \equiv 12(\bmod 28)$
b) $3 x^{2}+2 x-4 \equiv 0(\bmod 17)$

Solution: a) Using Euclid's algorithm we find that $(18,28)=2$. Thus the congruence $18 x \equiv 12(\bmod 28)$ has two solutions modulo 28 , given by $x \equiv x_{0}(\bmod 28)$ or $x \equiv$ $x_{0}+14(\bmod 28)$, where x_{0} is any particular solution. To find a particular solution, we work the Euclid's algorithm backwards to get $2=2 \cdot 28+(-3) \cdot 18$. Multiplying by 6 , we see that $12=12 \cdot 28-18 \cdot 18 \equiv 18 \cdot(-18)(\bmod 28)$. Thus $x_{0}=-18$ is a particular solution so the solutions are $x \equiv-18(\bmod 28)$ or $x \equiv-4(\bmod 28)$, which can be written as $x \equiv 10(\bmod 28) \quad$ or $x \equiv 24(\bmod 28)$.
b) Note that $3 \cdot 6=18 \equiv 1(\bmod 17)$, i.e. 6 is the inverse of 3 modulo 17 . We multiply our congruence by 6 and get $18 x^{2}+12 x-24 \equiv 0(\bmod 17)$, i.e. $x^{2}+12 x-7 \equiv 0(\bmod 17)$. Now we complete to squares:

$$
x^{2}+12 x-7=(x+6)^{2}-36-7 \equiv(x+6)^{2}-9(\bmod 17) .
$$

Thus $(x+6)^{2} \equiv 9=3^{2}(\bmod 17)$ and therefore $x+6 \equiv 3(\bmod 17)$ or $x+6 \equiv$ $-3(\bmod 17)$. Equivalently, $x \equiv-3 \equiv 14(\bmod 17)$ or $x \equiv-9 \equiv 8(\bmod 17)$.

Problem 5. a) Define a primitive root modulo m. Prove that 2 is a primitive root modulo 25.
b) Show that if $(a, 77)=1$ then 77 divides $a^{30}-1$.
c) Is there a primitive root modulo 77? Explain your answer.

Solution: a) A primitive root modulo m is any integer a such that $\operatorname{ord}_{m} a=\phi(m)$. In other words, a is a primitive root modulo m if $a^{\phi(m)} \equiv 1(\bmod m)$ and $a^{k} \not \equiv 1(\bmod m)$ for $1 \leq k<\phi(m)$.

We have $\phi(25)=\phi\left(5^{2}\right)=5 \cdot 4=20$. Thus, the order of 2 modulo 25 is a divisor of 20 , so it can be $1,2,4,5,10$ or 20 . By inspection, we check that 20 is the smallest among these exponents which works:

$$
\begin{aligned}
& 2^{2}=4 \not \equiv 1(\bmod 25) ; ~ 2^{4}=16 \not \equiv 1(\bmod 25) \\
& 2^{5}=32 \equiv 7 \not \equiv 1(\bmod 25) ; ~ 2^{10} \equiv 7^{2} \equiv-1 \not \equiv 1(\bmod 25) .
\end{aligned}
$$

Thus the order of 2 modulo 25 is equal to 20 and therefore 2 is a primitive root modulo 25.

Second method: We proved in class the following result: if p is an odd prime and a is a primitive root modulo p such that $a^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$ then a is a primitive root modulo p^{k} for every positive integer k.

Taking $p=5, a=2$ we see that 2 is a primitive root modulo 5 and $2^{4} \not \equiv 1(\bmod 25)$. Thus 2 is a primitive root modulo any power of 5 .
b) Note that $77=7 \cdot 11$. If $(a, 77)=1$ then $(a, 7)=1=(a, 11)$. Thus, by Fermat's Little Theorem, we have $a^{6} \equiv 1(\bmod 7)$ and $a^{10} \equiv 1(\bmod 11)$. Raising both sides of the first congruence to the power 5 and both sides of the second to the power 3 we get $a^{30} \equiv$ $1(\bmod 7)$ and $a^{30} \equiv 1(\bmod 11)$. Since $(7,11)=1$, we conclude that $a^{30} \equiv 1(\bmod 77)$.
c) Note that $\phi(77)=\phi(7 \cdot 11)=6 \cdot 10=60$. If a were a primitive root modulo 77 then $\operatorname{ord}_{77} a=60$. However, we know by part b) that $a^{30} \equiv 1(\bmod 77)$, so ord ${ }_{77} a \mid 30$ and therefore the order cannot be 60 . This proves that there does not exist a primitive root modulo 77.
vspace 3 mm
Problem 6. Let $a>1, n>1$ be integers
a) What is the order of a modulo $a^{n}+1$? Explain your answer.
b) Prove that $2 n \mid \phi\left(a^{n}+1\right)$.

Solution: a) Let t be the order of a modulo $a^{n}+1$ (note that a and $a^{n}+1$ are relatively prime). Clerly we have $a^{n} \equiv-1\left(\bmod a^{n}+1\right)$. Squaring we get $a^{2 n} \equiv 1\left(\bmod a^{n}+1\right)$.

Thus $t \mid 2 n$. Any divisor of $2 n$ less than $2 n$ does not exceed n But if $t \leq n$ then $a^{t}-1 \leq a^{n}-1$, so $a^{t}-1$ can not be divisible by $a^{n}+1$. This means that $t=2 n$.
b) By Euler's Theorem, $a^{\phi\left(a^{n}+1\right)} \equiv 1\left(\bmod a^{n}+1\right)$. Thus $t \mid \phi\left(a^{n}+1\right)$. Since $t=2 n$, the result follows.

Problem 7. Let p be a prime such that $p \equiv 2(\bmod 3)$. Prove that the congruence $x^{3} \equiv a(\bmod p)$ is solvable for every integer a. How many solutions modulo p does it have for a given a ?
Solution: When $p \mid a$, then the congruence has a unique solution $a \equiv 0(\bmod p)$.
Suppose that $p \nmid a$. We know that $x^{3} \equiv a(\bmod p)$ is solvable if and only if $a^{(p-1) / \operatorname{gcd}(3, p-1)} \equiv$ $1(\bmod p)$. Since $p \equiv 2(\bmod 3), p-1$ is not divisible by 3 , hence $\operatorname{gcd}(p-1,3)=1$. Thus our condition is $a^{p-1} \equiv 1(\bmod p)$, which is true by the Fermat Little Theorem.

What we proved so far is that the map $f(x)=x^{3}(\bmod p)$ is a surjective map from $\{1,2, \ldots, p-1\}$ to itself. Thus, it has to be a bijection. In other words the congruence $x^{3} \equiv a(\bmod p) \quad$ gas unique solution for every a.

Second method: Let g be a primitive root modulo p, so $\operatorname{ord}_{p}(g)=p-1$. Then $\operatorname{ord}_{p}\left(g^{3}\right)=(p-1) / \operatorname{gcd}(3, p-1)=p-1$, so g^{3} is also a primitive root modulo p. It follows that for every a relatively prime to p there is unique k such that $1 \leq k \leq p-1$ and $a \equiv g^{3 k}(\bmod p)$. In other words, there is unique $x=g^{k}$ solving $x^{3} \equiv a(\bmod p)$.

Problem 8. Let p be an odd prime such that $p \mid a^{2}+b^{2}$ for some integers a, b relatively prime to p. Prove that $p \equiv 1(\bmod 4)$
Solution: We have $a^{2} \equiv-b^{2}(\bmod p)$. Raising both sides to the power $(p-1) / 2$ we get

$$
a^{p-1} \equiv(-1)^{(p-1) / 2} b^{p-1}(\bmod p)
$$

Since $a^{p-1} \equiv 1 \equiv b^{p-1}(\bmod p)$ by Fermat's Little Theorem, we see that $1 \equiv(-1)^{(p-1) / 2}(\bmod p)$. This implies that $1=(-1)^{(p-1) / 2}$, which holds if and only if $p \equiv 1(\bmod 4)$.

Second solution: We have $a^{2} \equiv-b^{2}(\bmod p)$. Since a, b are not divisible by p, we can use Legendre symbol:

$$
1=\left(\frac{a^{2}}{p}\right)=\left(\frac{-b^{2}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{b^{2}}{p}\right)=\left(\frac{-1}{p}\right) .
$$

We know that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
Problem 9. Is there a prime p such that each of the numbers $2,3,6$ is a primitive root modulo p ?

Solution: The answer is no. Indeed, recall that if g is a primitive root modulo p then $g^{(p-1) / 2} \equiv-1(\bmod p)$. Thus, if both 2 and 3 are primitive roots modulo p then $2^{(p-1) / 2} \equiv-1(\bmod p)$ and $3^{(p-1) / 2} \equiv-1(\bmod p)$. Multiplying these congruences, we get

$$
6^{\frac{p-1}{2}}=2^{\frac{p-1}{2}} 3^{\frac{p-1}{2}} \equiv(-1)(-1)=1(\bmod p)
$$

Thus 6 is not a primitive root modulo p.
Equivalently, note first that an even power of a primitive root cannot be a primitive root. But if both 2, 3 are congruent to odd powers of a chosen promitive root g then $6=2 \cdot 3$ would be congruent to an even power, hence would not be a primitive root modulo p.

Problem 10. Let p be a prime divisor of $10^{10^{n}}+1$. Prove that 2^{n+1} divides $p-1$.
Solution: Note that $10^{10^{n}}=a^{2^{n}}$, where $a=10^{5^{n}}$. We will show that if $a>1$ and $p \mid a^{2^{n}}+1$ then 2^{n+1} divides $p-1$. Indeed, we have $a^{2^{n}} \equiv-1(\bmod p)$, so $a^{2^{n+1}} \equiv 1(\bmod p)$. Let t be the order of a modulo p. Thus t divides 2^{n+1}. We claim that $t=2^{n+1}$. Otherwise, if $t<2^{n+1}$ then t would divide 2^{n} and we would have $a^{2^{n}} \equiv 1(\bmod p)$, which is false. Thus $t=2^{n+1}$. By Fermat's Little Theorem, $a^{p-1} \equiv 1(\bmod p)$, so $t \mid p-1$. In other words, 2^{n+1} divides $p-1$.

