Exam 1

Problem 1. a) Define ged(a,b). Using Euclid’s algorithm compute ged (889, 168). Then
find z,y € Z such that gcd(889,168) = x - 889 + y - 168 (check your answer!).

b) Let a be an integer. Prove that ged(3a + 5, 7a + 12) = 1..

Solution: a) ged(a,b) is the largest positive integer which divides both a and b. It is
called the greatest common divisor of a and b.

Euclid’s algorithm yields:
889 = 5168 + 49,

168 = 3-49 + 21,
49=12.21+7,
21=3-7T+0.
It follows that gcd(889,168) = 7. Working backwards,

7=49-2-21 = 49—2-(168—3-49) = 7-49—2-168 = 7-(889—5-168)—2-168 = 7-889—37-168.
Thus x =7, y = —37 work.

b) Note that 3(7a + 12) + (=7)(3a + 5) = 1. Thus any common divisor of 3a + 5 and
7a + 12 must divide 1. It follows that ged(3a + 5,7a + 12) = 1.

Problem 2. a) State the Chinese Remainder Theorem.

b) Find all positive integers smaller than 200 which leave remainder 1, 3,4 upon division
by 3,5, 7 respectively. Show your work.

Solution: a)

Chinese Remainder Theorem: Let ni,...,n; be pairwise relatively prime positive in-
tegers and let N = nj -ng-...-ng. Given any integers ay, ..., ax, the system of congruences
x = a; (mod n;) , 1 =1,2,..., k, has unique solution x such that 0 < x < N. Moreover, an
integer y satisfies these congruences iff N|(x —y) (so all integers satisfying the congruences
are given by x +mN, m € 7).

b) The problem asks us to find all integers = such that 0 < x < 200 and
z=1(mod3), =3 (mod5), z=4 (mod 7).

In order to find a solution to these congruences, we follow the algorithm. We have N =
3-5-7=105, Ny =35, No =21, N3 = 15.

We solve Niz1 =1 (mod 3) , i.e. 221 =1 (mod 3) , which has a solution x; = 2.

Next we solve Nozg =3 (mod 5) , i.e. 29 =3 (mod 5) , which has a solution z9 = 3.

Finally, we solve N3x3 =4 (mod 7) ,i.e. z3 =4 (mod 7) , which has a solution z3 = 4.
A solution is given by x = Nix1+ Noxo+ N3xg = 70+ 63+60 = 193. The smallest positive
solution is then 193 — 105 = 88 and all solutions are given by the formula x = 88 + 105m,
m € Z. We get a positive solution smaller than 200 only for m = 0,1, so 83 and 193 are
the only solutions to our problem.



Problem 3. a) State Fermat’s Little Theorem and Euler’s Theorem.

b) Let m,n be relatively prime positive integers. Prove that

m®™ 4+ 0" =1 (mod mn) .

c¢) Find the remainder of 312018 upon division by 36.

Solution: a)
Fermat’s Little Theorem: Let p be a prime. Then

a?~! =1 (mod p)
for any integer a not divisible by p. Equivalently, a? = a (mod p) for any integer a.

Euler’s Theorem: Let n be a positive integer. Then
a®™ =1 (mod n)

for any integer a relatively prime to n. Here ¢(n) is the number of positive integrs relatively
prime to n and < n.

b) By Euler’s Theorem, m®™ =1 (mod n) . Clearly n®™ =0 (mod n) . Thus
m®™ 4 p®™ =1 (mod n) .

Similarly, n?(™) =1 (mod m) and m?™) =0 (mod m) so
m®™ 4 M =1 (mod m) .

In other words, m®™ + n®™ — 1 is divisible by both m and n. Since m and n are
relatively prime, we conclude that m®) 4 oM 1 is divisible by mn, i.e. m®) 4 po(n) =
1 (mod mn) .

c) Note that (31,36) = 1

2232, 50 $(36) = $(22) (3
2018 =12 - 168 4+ 2, so

Thus 3126 = 1 (mod 36) by Euler’s Theorem. Now 36 =
2) =2.2.3 = 12. Therefore 312 = 1 (mod 36) . Observe that

312018 — (3112)168 . 312 = 312 (mod 36) .

Thus it suffices to find the remainder of 312 upon division by 36. Since 31 = —5 (mod 36) ,
we have 312 = (—5)2 = 25 (mod 36) . The reminder in question is therefore equal to 25.

Problem 4. Find all solutions to the following congruences

a) 18z = 12 (mod 28) b) 322 + 22 — 4 =0 (mod 17)

Solution: a) Using Euclid’s algorithm we find that (18,28) = 2. Thus the congruence
18z = 12 (mod 28) has two solutions modulo 28, given by z = 2z (mod 28) or z =
xo + 14 (mod 28) , where x( is any particular solution. To find a particular solution, we
work the Euclid’s algorithm backwards to get 2 = 228 4+ (—3) - 18. Multiplying by 6, we
see that 12 = 12-28 —18-18 = 18- (—18) (mod 28) . Thus o = —18 is a particular solution
so the solutions are x = —18 (mod 28) or z = —4 (mod 28) , which can be written as
x =10 (mod 28) or z =24 (mod 28) .



b) Note that 3-6 = 18 =1 (mod 17) , i.e. 6 is the inverse of 3 modulo 17. We multiply our
congruence by 6 and get 1822 4+ 122 — 24 = 0 (mod 17) , i.e. 22+ 122 —7 =0 (mod 17) .
Now we complete to squares:

224120 —T=(24+6)2-36—7=(x46)2—9 (mod 17) .

Thus (z + 6)2 = 9 = 32 (mod 17) and therefore z + 6 = 3 (mod 17) or x + 6 =
—3 (mod 17) . Equivalently, x = —3 = 14 (mod 17) or x = -9 = 8 (mod 17) .

Problem 5. a) Define a primitive root modulo m. Prove that 2 is a primitive root modulo
25.

b) Show that if (a,77) = 1 then 77 divides a®° — 1.

¢) Is there a primitive root modulo 777 Explain your answer.

Solution: a) A primitive root modulo m is any integer a such that ord,,a = ¢(m). In
other words, a is a primitive root modulo m if a®™ =1 (mod m) and a* # 1 (mod m)
for 1 <k < ¢(m).

We have ¢(25) = ¢(5%) = 5-4 = 20. Thus, the order of 2 modulo 25 is a divisor of
20, so it can be 1,2,4,5,10 or 20. By inspection, we check that 20 is the smallest among
these exponents which works:

22 =4%#1 (mod 25); 2*=16%1 (mod 25)

2°=32=7#1 (mod 25); 2"°=7=-1#1 (mod 25) .

Thus the order of 2 modulo 25 is equal to 20 and therefore 2 is a primitive root modulo
25.

Second method: We proved in class the following result: if p is an odd prime and a is a
primitive root modulo p such that a?~! # 1 (mod p?) then a is a primitive root modulo
p¥ for every positive integer k.

Taking p = 5, a = 2 we see that 2 is a primitive root modulo 5 and 2* # 1 (mod 25) .
Thus 2 is a primitive root modulo any power of 5.

b) Note that 77 =7 - 11. If (a,77) = 1 then (a,7) = 1 = (a,11). Thus, by Fermat’s Little
Theorem, we have a® = 1 (mod 7) and @' = 1 (mod 11) . Raising both sides of the

first congruence to the power 5 and both sides of the second to the power 3 we get a3* =
1 (mod 7) and a® =1 (mod 11) . Since (7,11) = 1, we conclude that a** = 1 (mod 77) .

c) Note that ¢(77) = ¢(7-11) = 6 - 10 = 60. If a were a primitive root modulo 77 then
ord7za = 60. However, we know by part b) that ¢3° = 1 (mod 77) , so ord;7a|30 and
therefore the order cannot be 60. This proves that there does not exist a primitive root
modulo 77.
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Problem 6. Let a > 1, n > 1 be integers
a) What is the order of @ modulo a™ + 17 Explain your answer.

b) Prove that 2n|¢(a™ + 1).

Solution: a) Let ¢ be the order of a modulo a™ + 1 (note that a and a™ + 1 are relatively
prime). Clerly we have a” = —1 (mod a" + 1) . Squaring we get a®® =1 (mod a” + 1) .



Thus t|2n. Any divisor of 2n less than 2n does not exceed n But if ¢ < n then al—1 < a1,
so a' — 1 can not be divisible by @™ + 1. This means that t = 2n.

b) By Euler’s Theorem, a®(®"+Y) =1 (mod a™ + 1) . Thus t|¢(a” + 1). Since t = 2n, the
result follows.

Problem 7. Let p be a prime such that p = 2 (mod 3) . Prove that the congruence
23 = a (mod p) is solvable for every integer a. How many solutions modulo p does it have

for a given a?

Solution: When pla, then the congruence has a unique solution a = 0 (mod p) .

Suppose that p { a. We know that 23 = a (mod p) is solvable if and only if o(P=1)/gcd(Bp=1) =
1 (mod p) . Since p = 2 (mod 3) , p — 1 is not divisible by 3, hence ged(p — 1,3) = 1.
Thus our condition is a?~! =1 (mod p) , which is true by the Fermat Little Theorem.

What we proved so far is that the map f(x) = 23 (mod p) is a surjective map from
{1,2,...,p — 1} to itself. Thus, it has to be a bijection. In other words the congruence
23 = a (mod p) gas unique solution for every a.

Second method: Let g be a primitive root modulo p, so ord,(g) = p — 1. Then
ord,(g3) = (p — 1)/ ged(3,p — 1) = p — 1, so g3 is also a primitive root modulo p. It
follows that for every a relatively prime to p there is unique k such that 1 < k <p—1
and a = ¢ (mod p) . In other words, there is unique = = g* solving 3 = a (mod p) .

Problem 8. Let p be an odd prime such that p|a® 4 b? for some integers a, b relatively
prime to p. Prove that p =1 (mod 4)

Solution: We have a? = —b? (mod p) . Raising both sides to the power (p —1)/2 we get
Pt = (=1)P= V2P~ (mod p) .

Since a?' = 1 = "~ (mod p) by Fermat’s Little Theorem, we see that 1 = (—1)?~1/2 (mod p) .
This implies that 1 = (—1)®~1/2 which holds if and only if p = 1 (mod 4) .

Second solution: We have a? = —b? (mod p) . Since a, b are not divisible by p, we can
use Legendre symbol:

~0)-()-R0)-E)

We know that (%) =1lifand only if p=1 (mod 4) .

Problem 9. Is there a prime p such that each of the numbers 2, 3, 6 is a primitive root
modulo p?

Solution: The answer is no. Indeed, recall that if ¢ is a primitive root modulo p then
g®PD/2=_1 (mod p) . Thus, if both 2 and 3 are primitive roots modulo p then
2(=1)/2 = _1 (mod p) and 3?~1/2 = —1 (mod p) . Multiplying these congruences, we
get

6" =2"73"% = (~1)(~1) =1 (mod p) .
Thus 6 is not a primitive root modulo p.

Equivalently, note first that an even power of a primitive root cannot be a primitive
root. But if both 2, 3 are congruent to odd powers of a chosen promitive root g then
6 = 2 -3 would be congruent to an even power, hence would not be a primitive root
modulo p.



Problem 10. Let p be a prime divisor of 10" 4 1. Prove that 27*! divides p — 1.

Solution: Note that 109" = 4", where a = 10°". We will show that if ¢ > 1 and p\aQn +1
then 27*! divides p — 1. Indeed, we have a®" = —1 (mod p) , so =1 (mod p) . Let
t be the order of a modulo p. Thus t divides 2"*!. We claim that ¢t = 2"+, Otherwise, if
t < 2"+ then t would divide 2" and we would have a®>" = 1 (mod p) , which is false. Thus
t = 27*1. By Fermat’s Little Theorem, a?~! = 1 (mod p) , so t|p — 1. In other words,
27+ divides p — 1.



