
Exam 1

Problem 1. a) Define gcd(a, b). Using Euclid’s algorithm compute gcd(889, 168). Then
find x, y ∈ Z such that gcd(889, 168) = x · 889 + y · 168 (check your answer!).

b) Let a be an integer. Prove that gcd(3a + 5, 7a + 12) = 1..

Solution: a) gcd(a, b) is the largest positive integer which divides both a and b. It is
called the greatest common divisor of a and b.

Euclid’s algorithm yields:
889 = 5 · 168 + 49,

168 = 3 · 49 + 21,

49 = 2 · 21 + 7,

21 = 3 · 7 + 0.

It follows that gcd(889, 168) = 7. Working backwards,

7 = 49−2·21 = 49−2·(168−3·49) = 7·49−2·168 = 7·(889−5·168)−2·168 = 7·889−37·168.

Thus x = 7, y = −37 work.

b) Note that 3(7a + 12) + (−7)(3a + 5) = 1. Thus any common divisor of 3a + 5 and
7a + 12 must divide 1. It follows that gcd(3a + 5, 7a + 12) = 1.

Problem 2. a) State the Chinese Remainder Theorem.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division
by 3, 5, 7 respectively. Show your work.

Solution: a)
Chinese Remainder Theorem: Let n1, ..., nk be pairwise relatively prime positive in-
tegers and let N = n1 · n2 · ... · nk. Given any integers a1, ..., ak, the system of congruences
x ≡ ai (mod ni) , i = 1, 2, ..., k, has unique solution x such that 0 ≤ x < N . Moreover, an
integer y satisfies these congruences iff N |(x−y) (so all integers satisfying the congruences
are given by x + mN , m ∈ Z).

b) The problem asks us to find all integers x such that 0 < x < 200 and

x ≡ 1 (mod 3) , x ≡ 3 (mod 5) , x ≡ 4 (mod 7) .

In order to find a solution to these congruences, we follow the algorithm. We have N =
3 · 5 · 7 = 105, N1 = 35, N2 = 21, N3 = 15.

We solve N1x1 ≡ 1 (mod 3) , i.e. 2x1 ≡ 1 (mod 3) , which has a solution x1 = 2.
Next we solve N2x2 ≡ 3 (mod 5) , i.e. x2 ≡ 3 (mod 5) , which has a solution x2 = 3.
Finally, we solve N3x3 ≡ 4 (mod 7) , i.e. x3 ≡ 4 (mod 7) , which has a solution x3 = 4.

A solution is given by x = N1x1 +N2x2 +N3x3 = 70+63+60 = 193. The smallest positive
solution is then 193 − 105 = 88 and all solutions are given by the formula x = 88 + 105m,
m ∈ Z. We get a positive solution smaller than 200 only for m = 0, 1, so 88 and 193 are
the only solutions to our problem.
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Problem 3. a) State Fermat’s Little Theorem and Euler’s Theorem.

b) Let m, n be relatively prime positive integers. Prove that

mφ(n) + nφ(m) ≡ 1 (mod mn) .

c) Find the remainder of 312018 upon division by 36.

Solution: a)
Fermat’s Little Theorem: Let p be a prime. Then

ap−1 ≡ 1 (mod p)

for any integer a not divisible by p. Equivalently, ap ≡ a (mod p) for any integer a.

Euler’s Theorem: Let n be a positive integer. Then

aφ(n) ≡ 1 (mod n)

for any integer a relatively prime to n. Here φ(n) is the number of positive integrs relatively
prime to n and ≤ n.

b) By Euler’s Theorem, mφ(n) ≡ 1 (mod n) . Clearly nφ(n) ≡ 0 (mod n) . Thus

mφ(n) + nφ(n) ≡ 1 (mod n) .

Similarly, nφ(m) ≡ 1 (mod m) and mφ(m) ≡ 0 (mod m) so

mφ(n) + nφ(n) ≡ 1 (mod m) .

In other words, mφ(n) + nφ(n) − 1 is divisible by both m and n. Since m and n are
relatively prime, we conclude that mφ(n) +nφ(n) −1 is divisible by mn, i.e. mφ(n) +nφ(n) ≡
1 (mod mn) .

c) Note that (31, 36) = 1. Thus 31φ(36) ≡ 1 (mod 36) by Euler’s Theorem. Now 36 =
22 · 32, so φ(36) = φ(22)φ(32) = 2 · 2 · 3 = 12. Therefore 3112 ≡ 1 (mod 36) . Observe that
2018 = 12 · 168 + 2, so

312018 = (3112)168 · 312 ≡ 312 (mod 36) .

Thus it suffices to find the remainder of 312 upon division by 36. Since 31 ≡ −5 (mod 36) ,
we have 312 ≡ (−5)2 = 25 (mod 36) . The reminder in question is therefore equal to 25.

Problem 4. Find all solutions to the following congruences

a) 18x ≡ 12 (mod 28) b) 3x2 + 2x − 4 ≡ 0 (mod 17)

Solution: a) Using Euclid’s algorithm we find that (18, 28) = 2. Thus the congruence
18x ≡ 12 (mod 28) has two solutions modulo 28, given by x ≡ x0 (mod 28) or x ≡
x0 + 14 (mod 28) , where x0 is any particular solution. To find a particular solution, we
work the Euclid’s algorithm backwards to get 2 = 2 · 28 + (−3) · 18. Multiplying by 6, we
see that 12 = 12·28−18·18 ≡ 18·(−18) (mod 28) . Thus x0 = −18 is a particular solution
so the solutions are x ≡ −18 (mod 28) or x ≡ −4 (mod 28) , which can be written as
x ≡ 10 (mod 28) or x ≡ 24 (mod 28) .
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b) Note that 3 ·6 = 18 ≡ 1 (mod 17) , i.e. 6 is the inverse of 3 modulo 17. We multiply our
congruence by 6 and get 18x2 + 12x − 24 ≡ 0 (mod 17) , i.e. x2 + 12x − 7 ≡ 0 (mod 17) .
Now we complete to squares:

x2 + 12x − 7 = (x + 6)2 − 36 − 7 ≡ (x + 6)2 − 9 (mod 17) .

Thus (x + 6)2 ≡ 9 = 32 (mod 17) and therefore x + 6 ≡ 3 (mod 17) or x + 6 ≡
−3 (mod 17) . Equivalently, x ≡ −3 ≡ 14 (mod 17) or x ≡ −9 ≡ 8 (mod 17) .

Problem 5. a) Define a primitive root modulo m. Prove that 2 is a primitive root modulo
25.

b) Show that if (a, 77) = 1 then 77 divides a30 − 1.

c) Is there a primitive root modulo 77? Explain your answer.

Solution: a) A primitive root modulo m is any integer a such that ordma = φ(m). In
other words, a is a primitive root modulo m if aφ(m) ≡ 1 (mod m) and ak 6≡ 1 (mod m)
for 1 ≤ k < φ(m).

We have φ(25) = φ(52) = 5 · 4 = 20. Thus, the order of 2 modulo 25 is a divisor of
20, so it can be 1, 2, 4, 5, 10 or 20. By inspection, we check that 20 is the smallest among
these exponents which works:

22 = 4 6≡ 1 (mod 25) ; 24 = 16 6≡ 1 (mod 25)

25 = 32 ≡ 7 6≡ 1 (mod 25) ; 210 ≡ 72 ≡ −1 6≡ 1 (mod 25) .

Thus the order of 2 modulo 25 is equal to 20 and therefore 2 is a primitive root modulo
25.

Second method: We proved in class the following result: if p is an odd prime and a is a
primitive root modulo p such that ap−1 6≡ 1 (mod p2) then a is a primitive root modulo
pk for every positive integer k.

Taking p = 5, a = 2 we see that 2 is a primitive root modulo 5 and 24 6≡ 1 (mod 25) .
Thus 2 is a primitive root modulo any power of 5.

b) Note that 77 = 7 · 11. If (a, 77) = 1 then (a, 7) = 1 = (a, 11). Thus, by Fermat’s Little
Theorem, we have a6 ≡ 1 (mod 7) and a10 ≡ 1 (mod 11) . Raising both sides of the
first congruence to the power 5 and both sides of the second to the power 3 we get a30 ≡
1 (mod 7) and a30 ≡ 1 (mod 11) . Since (7, 11) = 1, we conclude that a30 ≡ 1 (mod 77) .

c) Note that φ(77) = φ(7 · 11) = 6 · 10 = 60. If a were a primitive root modulo 77 then
ord77a = 60. However, we know by part b) that a30 ≡ 1 (mod 77) , so ord77a|30 and
therefore the order cannot be 60. This proves that there does not exist a primitive root
modulo 77.

vspace3mm

Problem 6. Let a > 1, n > 1 be integers

a) What is the order of a modulo an + 1? Explain your answer.

b) Prove that 2n|φ(an + 1).

Solution: a) Let t be the order of a modulo an + 1 (note that a and an + 1 are relatively
prime). Clerly we have an ≡ −1 (mod an + 1) . Squaring we get a2n ≡ 1 (mod an + 1) .
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Thus t|2n. Any divisor of 2n less than 2n does not exceed n But if t ≤ n then at−1 ≤ an−1,
so at − 1 can not be divisible by an + 1. This means that t = 2n.

b) By Euler’s Theorem, aφ(an+1) ≡ 1 (mod an + 1) . Thus t|φ(an + 1). Since t = 2n, the
result follows.

Problem 7. Let p be a prime such that p ≡ 2 (mod 3) . Prove that the congruence
x3 ≡ a (mod p) is solvable for every integer a. How many solutions modulo p does it have
for a given a?

Solution: When p|a, then the congruence has a unique solution a ≡ 0 (mod p) .
Suppose that p ∤ a. We know that x3 ≡ a (mod p) is solvable if and only if a(p−1)/ gcd(3,p−1) ≡

1 (mod p) . Since p ≡ 2 (mod 3) , p − 1 is not divisible by 3, hence gcd(p − 1, 3) = 1.
Thus our condition is ap−1 ≡ 1 (mod p) , which is true by the Fermat Little Theorem.

What we proved so far is that the map f(x) = x3 (mod p) is a surjective map from
{1, 2, . . . , p − 1} to itself. Thus, it has to be a bijection. In other words the congruence
x3 ≡ a (mod p) gas unique solution for every a.

Second method: Let g be a primitive root modulo p, so ordp(g) = p − 1. Then
ordp(g3) = (p − 1)/ gcd(3, p − 1) = p − 1, so g3 is also a primitive root modulo p. It
follows that for every a relatively prime to p there is unique k such that 1 ≤ k ≤ p − 1
and a ≡ g3k (mod p) . In other words, there is unique x = gk solving x3 ≡ a (mod p) .

Problem 8. Let p be an odd prime such that p|a2 + b2 for some integers a, b relatively
prime to p. Prove that p ≡ 1 (mod 4)

Solution: We have a2 ≡ −b2 (mod p) . Raising both sides to the power (p − 1)/2 we get

ap−1 ≡ (−1)(p−1)/2bp−1 (mod p) .

Since ap−1 ≡ 1 ≡ bp−1 (mod p) by Fermat’s Little Theorem, we see that 1 ≡ (−1)(p−1)/2 (mod p) .
This implies that 1 = (−1)(p−1)/2, which holds if and only if p ≡ 1 (mod 4) .

Second solution: We have a2 ≡ −b2 (mod p) . Since a, b are not divisible by p, we can
use Legendre symbol:

1 =

(

a2

p

)

=

(

−b2

p

)

=

(

−1

p

) (

b2

p

)

=

(

−1

p

)

.

We know that
(

−1
p

)

= 1 if and only if p ≡ 1 (mod 4) .

Problem 9. Is there a prime p such that each of the numbers 2, 3, 6 is a primitive root
modulo p?

Solution: The answer is no. Indeed, recall that if g is a primitive root modulo p then
g(p−1)/2 ≡ −1 (mod p) . Thus, if both 2 and 3 are primitive roots modulo p then
2(p−1)/2 ≡ −1 (mod p) and 3(p−1)/2 ≡ −1 (mod p) . Multiplying these congruences, we
get

6
p−1

2 = 2
p−1

2 3
p−1

2 ≡ (−1)(−1) = 1 (mod p) .

Thus 6 is not a primitive root modulo p.
Equivalently, note first that an even power of a primitive root cannot be a primitive

root. But if both 2, 3 are congruent to odd powers of a chosen promitive root g then
6 = 2 · 3 would be congruent to an even power, hence would not be a primitive root
modulo p.
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Problem 10. Let p be a prime divisor of 1010n

+ 1. Prove that 2n+1 divides p − 1.

Solution: Note that 1010n

= a2n

, where a = 105n

. We will show that if a > 1 and p|a2n

+1
then 2n+1 divides p − 1. Indeed, we have a2n

≡ −1 (mod p) , so a2n+1

≡ 1 (mod p) . Let
t be the order of a modulo p. Thus t divides 2n+1. We claim that t = 2n+1. Otherwise, if
t < 2n+1 then t would divide 2n and we would have a2n

≡ 1 (mod p) , which is false. Thus
t = 2n+1. By Fermat’s Little Theorem, ap−1 ≡ 1 (mod p) , so t|p − 1. In other words,
2n+1 divides p − 1.
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