Homework

due on Wednesday, October 13

Read carefully Chapter 2 of Hartshorne's book. Solve problems 6.1, 6.3 a and c, 7.6, 7.8 in Chapter 2. Work on other problems to sections 6 and 7.

Also solve the following problems.

Problem 1. In class we proved the following theorem.

Theorem. Let ABC be a triangle and let P be a point whose orthogonal projections on the sides of the triangle are K, L, M. Then the points K, L, M are collinear if and only if P is on the circumscribed circle of the triangle ABC. The line through K, L, M is then called **the Simson line of** P.

Using this result solve the following problem.

Let A, B, C be three collinear points and let P be a point outside the line through A, B, C. Prove that the circumcenters of the triangles PAB, PAC, PBC and the point P lie on a circle. Hint: Note that if two circles intesect at two points X, Y then the line joining the centers of the circles is the perpendicular bisector of XY. Consider the triangle with vertices at the circumcenters. What are the projections of P on the sides of this triangle?

Problem 2. Let ABC be a triangle and let a line l intersect the lines AB, BC, AC at C_1 , A_1 , B_1 respectively. Let P be the corresponding Miquel point. Prove that the orthogonal projections of P on the lines AB, AC, BC and l are collinear.

Problem 3. The altitudes of a triangle ABC intersect at a point H. Let O_A be the circumcenter of the triangle BCH. Similarly define O_B and O_C . Prove that the segments AO_A , BO_B , CO_C share a common midpoint. What is this point? Conclude that the triangles ABC and $O_AO_BO_C$ are congruent.

Hint: 1) What is the orthocenter of BCH?

2) What can you say about the nine-point circles of the triangles *ABC*, *ABH*, *BCH*, *ACH*?

b) Prove that H is the circumcenter of $O_A O_B O_C$ and that the circumcenter of ABC is the orthocenter of $O_A O_B O_C$.

c) Prove that the Euler lines of the triangles *ABC*, *ABH*, *BCH*, *ACH* intersect at one point.

Problem 4. The construction of Problem 5.11 in section 5 of Chapter 1 in the book works only if the point F exists. Here is a construction which always works (assuming that A, B are either both inside or both outside of Γ).

If the perpendicular bisector of AB passes through the center of the given circle Γ then the construction is easy (explain what to do in this case). Suppose then that the perpendicular bisector of AB does not contain the center of Γ . Take an arbitrary point E on Γ which is not on the line AB. Construct the circumscribed circle of the triangle ABE. This circle intersects Γ at points E and D. Let M be the point of intersection of the lines AB and DE (why do these lines intersect? what should you do if D = E?). Construct a point C on Γ such that the line MC is tangent to Γ . Then C is the required point (note that usually there are 2 solutions).

Prove that this construction is correct. Hint: Prove that the line MC is tangent to the circumcircle of the triangle ABC (Propositions 36-37 of Elements, Book III should be helpful).