Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written?

Answer: The first comprehensive text on geometry is called The Elements and it was written by Euclid in Alexandria (Egypt) around 300 BC.
2) State three theorems from the Elements which you find important and which speak about both lines and circles.

There are many possible choices. Perhaps the most interesting are the following:
Book III, Proposition 32. Let A be a point of a circle Γ, let l be the line tangent to Γ at A and let m be a line through A cutting Γ at another point B. If P is a point on l different from A and if C is a point on Γ such that C and P are on the opposite sides of m then $\angle P A B \equiv \angle A C B$.

Book III, Proposition 35. Let P be a point inside a circle Γ. Let a line through P cut Γ at A and B and let another line through P cut Γ at C and D. Then $A P \cdot P B=C P \cdot P D$ (i.e. the rectangle with sides $A P, P B$ has content equal to the content of the rectangle with sides $C P, P D)$.

Book III, Proposition 36. Let P be a point outside a circle Γ. Let a line through P cut Γ at A and B and let another line through P be tangent to Γ at C. Then $P A \cdot P B=P C^{2}$.

Remark. By the above propositions, if P is a point not on a circle Γ and if a line through P cuts Γ in two points $A, B(A=B$ when the line is tangent to $\Gamma)$ then the quantity $P A \cdot P B$ is the same for all lines through P. This quantity is called the power of P with respect to Γ. When P is inside the circle, the power is taken with negative sign (i.e. it is $-P A \cdot P B$).
3) Define the following concepts
a) altitude,
b) median, c) centroid,
d) orthocenter,
e) incenter, f) circumcenter

An altitude of a triangle is a line passing through a vertex of the triangle and perpendicular to the side subtended by the vertex.
A median of a triangle is a line passing through a vertex of the triangle and the midpoint of the side subtended by the vertex.
The centroid of a triangle is the point where all three medians intersect.

The orthocenter of a triangle is the point where all three altitudes intersect.
The incenter of a triangle (rectilinear figure) is the center of a circle tangent to all sides of the triangle (rectilinear figure), i.e. the inscribed circle. Every triangle has its incenter; it is the point where the angle bisectors of the angles of the triangle intersect.
The circumcenter of a triangle (rectilinear figure) is the center of the circle containing all the vertices of the triangle (rectilinear figure), i.e. the circumscribed circle. Every triangle has its circumcenter; it is the point where the perpendicular bisectors of the three sides of the triangle intersect.
4) Define Euler line. What can you say about the position of the points defining this line?

The Euler line of a triangle is the line passing through the orthocenter H, the centroid G and the circumcenter O of the triangle. The point G is always between the points H and O and $H G$ is twice $O G$. Note that Euler line is not defined for equilateral triangles since then the three points coincide.
5) Define the nine point circle. Explain what are the nine points. What can you say about the location of the nine-point center?

Let $A B C$ be a triangle, let H be the orthocenter and let H_{A}, H_{B}, H_{C} be the feet of the altitudes through A, B, C respectively (i.e. H_{A} is on $B C$ and $A H_{A}$ is an altitude, etc.). Then the following nine points are on one circle, called the nine-point circle of $A B C$: the midpoints of sides of $A B C$, the feet of the altitudes H_{A}, H_{B}, H_{C} and the midpoints of the segments $\overline{A H}, \overline{B H}, \overline{C H}$. The center of the nine-point circle is called the nine-point center of $A B C$. The nine point center is on the Euler line and it coincides with the midpoint of the segment joining the orthocenter and the circumcenter.
6) State Pasch axiom.

Let l be a line which does not contain any of the vertices of a given triangle and which intersects one of the sides of the triangle. Then l intersects one (and only one) of the remaining two sides.
7) Define incidence geometry.

An incidence geometry is a set Π, elements of which are called points, and a set \mathcal{L} of subsets of Π, elements of which are called lines, such that the following three axioms are satisfied:

I1. Any two disctinct points belong to a unique line.
I2. Any line has at least two points.

I3. There exist three points such that no line contains all three of them.
8) State the plane separation theorem and explain how the sides of a line are defined.

Plane separation. Let l be a line in a geometry which satisfies the incidence axioms and the betweenness axioms. The set of all points not on l can be divided into two disjoint subsets, called the sides of l such that:

- two points A, B are in the same side of l if and only if either $A=B$ or l does not intersect the segment $\overline{A B}$ (i.e. no point on l is between A and B).
- two points A, B are in different side of l if and only if l intersects the segment $\overline{A B}$ (i.e. there is a point on l which is between A and B).

9) Define a ray, an angle, and the interior of an angle.

A ray $\overrightarrow{A B}$ consists of all points C of the line $A B$ such that A is not between B and C. In other words, $\overrightarrow{A B}=\{A\} \cup\{B\} \cup\{X: A * X * B\} \cup\{X: A * B * X\}$.

An angle $\angle B A C$ is the union of the rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$ under the assumption that A, B, C are not collinear.
A point P is in the interior of an angle $\angle B A C$ if and only if P and B are on the same side of the line $A C$ and P and C are on the same side of the line $A B$.
10) What is Hilbert's plane?

Hilbert's plane is a set Π, whose elements are called points such that:

- Some subsets of Π, called lines, are selected and the incidence axioms are satisfied.
- A notion of betweenness is defined for some triples of points in Π and the axioms of betweenness are satisfied.
- A notion of congruence is defined for segments in Π and the congruence axioms C1-C3 are satisfied.
- A notion of congruence is defined for angles and congruence axioms C4-C6 are satisfied.

Problem 2. Two circles Ω_{1} and Ω_{2} intersect at points A, B. The segment $\overline{A M}$ is a diameter of Ω_{1} and the segment $\overline{A N}$ is a diameter of Ω_{2}. Prove that the points M, B, N are collinear.

Solution. Consider the angle $\angle A M B$. It stands on the diamter of Ω_{1}, hence it is a right angle. Thus the line $B M$ is perpendicular to the line $A B$ at B. By the same argument, the line $B N$ is perpendicular to the line $A B$ at B. Since the line perpendicular to $A B$ at B is unique, the points M, N, B are on the same line.

Problem 3. In a triangle the orthocenter coincides with the circumcenter. Prove that the triangle is equilateral.

Solution. Let $A B C$ be a triangle in which the orthocenter H and the circumcenter coincide. The line $A H$ is an altitude, so it is perpendicular to $B C$. Since H coincides with the circumcenter, the perpendicular bisector of $\overline{B C}$ passes through H. Since there is unique line through H which is perpendicular to $B C$, we conclude that $A H$ is the perpendicular bisector of $\overline{B C}$. Thus the midpoint M_{A} of $\overline{B C}$ belongs to $A H$. Since $\angle A M_{A} B$ is right we have $\angle A M_{A} B \equiv \angle A M_{A} C$. By SAS, the triangles $A M_{A} B$ and $A M_{A} C$ are congruent. In particular, $\overline{A C} \equiv \overline{A B}$.

In the same way we show that $\overline{B A} \equiv \overline{B C}$. This proves that $A B C$ is equilateral.
Problem 4. Two circles Γ and Γ^{\prime} are internally tangent at a point A (say Γ is inside Γ^{\prime}). A ray emanating from A intersects Γ and Γ^{\prime} at points B, B^{\prime} respectively. Another ray emanating from A intersects Γ and Γ^{\prime} at points C, C^{\prime} respectively. Prove that $B C$ and $B^{\prime} C^{\prime}$ are parallel. Carefully explain your reasoning. Hint: consider the line tangent to the circles at A.

Solution. Let l be the line tangent to Γ^{\prime} at A. Then all points of l except A are outside of Γ^{\prime}. But all points of Γ except A are inside of Γ^{\prime}. Thus A is the only point of intersection of l and Γ, i.e. l is tangent to Γ too (there are other ways to justify this).

Note that the points C, C^{\prime} are on the same side of the line $A B$ (since $\left.A * C * C^{\prime}\right)$. Let P be a point on l which is on the opposite side of the line $A B$ than the side where C, C^{\prime} are. By Proposition 32 from Book III of the Elements (see the solution to question 2 of Problem 1), we get that $\angle P A B \equiv \angle A C B$ and $\angle P A B^{\prime} \equiv \angle A C^{\prime} B^{\prime}$. Since $\angle P A B=\angle P A B^{\prime}$, we see that $\angle A C B \equiv \angle A C^{\prime} B^{\prime}$. It follows that the lines $B C$ and $B^{\prime} C^{\prime}$ are parallel (Proposition 27 in Book I).

Problem 5. In this problem you can only use the incidence axioms, the betweenness axioms, and the plane separation theorem. Suppose that $A * B * C$ on one line and $A * D * E$ on a different line. Prove that the segments $\overline{B E}$ and $\overline{C D}$ have a common point.

Solution. This solution will only use the Pasch axiom. Consider triangle $A C D$. The line $E B$ does not contain any vertex of this triangle (why?) and it has a point B on it, which is between A and C. It follows that the line EB has either a point between D and C or a
point between A and D. The latter is not possible, as the only point on line $E B$ which is also on line $A D$ is E and E is not between A and D. We conclude that the line $E B$ has a point between C and D, i.e the line $E B$ intesects the segment $\overline{C D}$. Let P be the point of intersection of lines $E B$ and $C D$. Thus we showed that P belongs to the segment $\overline{C D}$.

In the same way, considering traingle $A B E$ and the line $D C$ we show that P belongs to the segment $\overline{E B}$.

Second solution. Since $A * D * E$, points A and D are on the same side of the line $B E$. Since $A * B * C$, points A and C are on opposite sides of the line $B E$. Thus C and D are on opposite sides of the line $B E$ and therefore the segment $\overline{C D}$ intersects line $B E$ at some point P. In the same manner, we show that B and E are on opposite sides of the line $C D$, hence segment $\overline{B E}$ intersects the line $C D$. Thus the point P (the intersection of lines $C D$ and $B E$) belongs to both segments $\overline{B E}$ and $\overline{C D}$.

Problem 6. a) State Ptolemy's theorem.
b) Let $A B C$ be an equilateral traingle and let Γ be its circumcircle. Let P be a point on the $\operatorname{arc} B C$ of Γ which does not contain A. Prove that $P A=P B+P C$.

Solution. a) Ptolemy's Theorem. Let $A B C D$ be a convex quadrilateral inscribed in a circle. Then $A B \cdot C D+A D \cdot B C=A C \cdot B D$.
b) Under the assumptions given in the problem, the quadrilateral $A B P C$ is convex and inscribed in a circle. By Ptolemy's theorem, $A B \cdot P C+A C \cdot B P=B C \cdot A P$. Since the triangle $A B C$ is equilateral, we have $A B=A C=B C$. Thus we can divide both sides by $A B$ and get $P C+B P=A P$.

Problem 7. a) State Ceva's theorem.
b) The incircle of the triangle $A B C$ is tangent to sides $A B, B C, A C$ at points C_{1}, A_{1}, B_{1} respectively. Prove that the lines $A A_{1}, B B_{1}, C C_{1}$ intersect at one point.

Solution. a) Ceva's Theorem. Let $A B C$ be a triangle and let A_{1}, B_{1}, C_{1} be points on lines $B C, A C, A B$ respectively, which are different form the vertices A, B, C. The lines $A A_{1}, B B_{1}, C C_{1}$ are intersect at one point if and only if either exactly one or all three of the points A_{1}, B_{1}, C_{1} are on the sides of the triangle and

$$
\frac{A B_{1}}{B_{1} C} \frac{C A_{1}}{A_{1} B} \frac{B C_{1}}{C_{1} A}=1
$$

b) Let O be the center of the inscribed circle. Then $A O$ is the angle bisector of $\angle B A C$, so $\angle O A B$ is acute (being half of the angle $\angle B A C$). Similarly $\angle O B A$ is acute. The line $O C_{1}$ is an altitude in the traingle $O A B$. Since both angles $\angle O A B$ and $\angle O B A$ are acute,
the feet of the altitude from O in triangle $O A B$ is on the side $\overline{A B}$, i.e. C_{1} is on $\overline{A B}$. In the same way we show that A_{1} is on $\overline{B C}$ and B_{1} is on $\overline{A C}$. By Ceva's theorem, in order to prove that lines $A A_{1}, B B_{1}, C C_{1}$ intersect at one point it suffices to prove that

$$
\frac{A B_{1}}{B_{1} C} \frac{C A_{1}}{A_{1} B} \frac{B C_{1}}{C_{1} A}=1
$$

Hovever, since $A B_{1}$ and $A C_{1}$ are tangents to the inscribed circle from the same point A, we have $A B_{1}=A C_{1}$. Similarly, $B A_{1}=B C_{1}$ and $C A_{1}=C B_{1}$. It is clear now that

$$
\frac{A B_{1}}{B_{1} C} \frac{C A_{1}}{A_{1} B} \frac{B C_{1}}{C_{1} A}=1
$$

