Homework

due on Wedesday, November 13

Study Chapters 3 and 4 of Hartshorne's book. Solve the following problems: 15.3
18.9
20.5
20.14 Hint: Let the given lines be $A_{1} A_{2}, A_{2} A_{3}, A_{1} A_{3}$ and l, where l intesects $A_{1} A_{2}$ at $B_{3}, A_{1} A_{3}$ at B_{2} and $A_{2} A_{3}$ at B_{1}. Consider cirles C_{1} on diameter $A_{1} B_{1}$ and C_{2} on diameter $A_{2} B_{2}$. Prove that each of the four orthocenters has the same power with respect to C_{1} and C_{2}.

Problem 1. In any Hilbert plane, prove that the interior of a circle is convex. Hint: Prove first that if $A B C$ is a triangle and X is between A and B then either $\overline{A X}<\overline{A B}$ or $\overline{A X}<\overline{A C}$. You may use propositions 2-27 from book 1 of Euclid.

Problem 2. Let Π be a Hilbert plane which does not satisfy the Archimedes axiom (A). Thus there exist segments $\overline{A B}$ and $\overline{A Q}$ such that $n \overline{A B}<\overline{A Q}$ for every natural number n. Consider the set Π_{A} which consists of A and all points P in Π for which there exists a natural number m such that $\overline{A P}<m \overline{A B}$ (we call such points finitely bounded from A). Call a subset l of Π_{A} a line if it is non-empty and there is a line L in Π such that $l=L \cap \Pi_{A}$.
a) Prove that Π_{A} with the lines defined above is an incidence geometry.
b) Prove that Π_{A} does not satisfy the parallel postulate (P) (hint: note first that for any $P \in \Pi_{A}$ the line $P Q$ in Π intersected with Π_{A} is a line in Π_{A} through P and all these lines are parallel to each other.
c) Define betweenness in Π_{A} as follows: Y is between X and Z in Π_{A} if the same holds when we consider them as points in Π. Prove thet the betweenness axioms are satisfied for Π_{A}.
d) Define two segments $\overline{X Y}$ and $\overline{K L}$ in Π_{A} to be congruent if the segments $\overline{X Y}$ and $\overline{K L}$ in Π are congruent. Similarly, two angles $\angle X Y Z$ and $\angle K L M$ are congruent in Π_{A} if the angles $\angle X Y Z$ and $\angle K L M$ are congruent in Π. Prove that Π_{A} satisfies
the congruence axioms. It follows that Π_{A} is a Hilbert plane which does not satisfy the parallel axiom.

