Homework

due on Monday, November 25

Read carefully Chapter 5 and Chapter 7, sections 37, 39 of Hartshorne's book. Solve the following problems:

Problem 1. Consider an isosceles triangle with base of length 18 and height of length 16. Divide this triangle into several polygonal pieces from which a square of side 12 can be assembled (use 1 cm as a unit). Explain your solution carefully and provide the actual pieces made out of a thin cardboard (or paper).

Problem 2. Consider 4 circles $S_{1}, S_{2}, S_{3}, S_{4}$. Suppose that S_{1}, S_{2} intersect at A_{1} and A_{2}, circles S_{2}, S_{3} intersect at B_{1} and B_{2}, circles S_{3}, S_{4} intersect at C_{1} and C_{2}, and circles S_{4}, S_{1} intersect at D_{1} and D_{2}. Suppose furthermore that the points A_{1}, B_{1}, C_{1}, D_{1} are on a circle S (or on a line). Prove that the points $A_{2}, B_{2}, C_{2}, D_{2}$ are also on a circle (or on a line).

Hint: Consider a circular inversion with center A_{1} (in any circle with center A_{1}). What will hapen to S_{1}, S_{2} and S ? What will happen ntto the other circles? You should be able to apply our old theorem about Miquel point.

Problem 3. No three of the points A, B, C, D are collinear. Prove that the angle between the circumcircles of triangles $A B C$ and $A B D$ is the same as the angle between the circumcircles of triangles $A C D$ and $B C D$.

Hint: Perform a circular inversion in a circle with center A. What happens to the angles in question?

Problem 37.3
Problem 37.14
Problem 37.18
Problem 24.16. Hint: Let b be the longest side of the triangle. Use the method from class to dissect the triangle into 3 pieces and assemble them into a rectangle with one side b. Then follow the proof of Proposition 24.8 (explain why it can be used).

Problem 24.17 Hint: compare the longest side of the triangle to the diameter of the square.

