Homework

due Wednesday, December 4

Read carefully sections 39, 40 in Chapter 7 of Hartshorne's book. Solve the following problems.

Problem 1. Let Π be a Hilbert plane. For any line l in Π the reflection in l is the function $s_{l}: \Pi \longrightarrow \Pi$ defined as follows: for a point A in Π there is unique line t through A perpendicular to l. Let P be the point where l and t intersect. If $A=P$ then define $s_{l}(A)=A$. If $A \neq P$ then there is unique point B on t such that $A * P * B$ and $\overline{A P} \equiv \overline{P B}$. Define $s_{l}(A)=B$.

A rigid motion is a function $R: \Pi \longrightarrow \Pi$ such that

1. if l is a line then its image $R(l)=\{R(A): A \in l\}$ is also a line.
2. if $A * B * C$ then $R(A) * R(B) * R(C)$.
3. $\overline{A B} \equiv \overline{R(A) R(B)}$ for every segment $\overline{A B}$.
4. $\angle A B C \equiv \angle R(A) R(B) R(C)$ for every angle $\angle A B C$.
a) Prove that any rigid motion is a bijection and the inverse function is also a rigid motion.
b) Prove that a composition of rigid motions is a rigid motion.
c) Prove that any reflection in a line is a rigid motion.
d) Prove that if a rigid motion fixes three non-collinear points then it is the identity function (i.e. it fixes all the points).
e) Prove that any rigid motion R is a composition of at most three reflections. Hint: Pick three non-collinear points A, B, C. Find a composition S of at most three reflections such that $R(A)=S(A), R(B)=S(B), R(C)=S(C)$. Conclude that $S=R$.

Problem 39.3
Problem 39.8

Problem 39.9
Problem 39.14 part b)
Problem 39.19
Problem 39.11 Hint: We can find the Euclidean center C of ζ (how ?). Consider the line $O C$. Explain why the P-center of ζ is on $O C$. Now we may proceed in various ways.

First approach: It suffices to construct a circle T which is perpendicular to both Γ and ζ. Explain why T will give a P-line which contains a P-diameter of ζ (recall: in any Hilbert plane a tangent line to a circle at some point is perpendicular to the diameter from that point). Thus the point inside ζ where T intersects the line $O C$ is the P-center of ζ. To construct T, note first that it is easy to construct a circle perpendicular to a given line and a given circle. Then use appropriate inversion to reduce to this case.

Second approach: Use first appropriate inversion to reduce to the case when ζ passes through O. Assuming that ζ contains O, the idea from the first approach becomes even simpler. Let A be the second point of intersection of the line $O C$ and ζ. Find the inverse B of A in the circle Γ. Then B is outside of Γ. Draw a tangent to Γ from B and let D be the point of tangency. Prove that the circle with center at B and radius $B D$ intersects the segment $O A$ at the P-center of ζ.

Regardless of which approach you use, carefully explain how you do the appropriate inversions using a compas and a ruler.

