Homework 5

Problem 1: Find the last digit of $\left[\frac{10^{20000}}{10^{100}+3}\right]$.

Problem 2: Problem 5.1.10

Problem 3: Problem 5.1.13 (Hint: Given n, when is $\left\lceil \frac{n+2^k}{2^{k+1}} \right\rceil \neq \left\lceil \frac{n+1+2^k}{2^{k+1}} \right\rceil$?)

Problem 4: Let p be an odd prime.

- 1) Show that there is a prime $q \not\equiv 1 \pmod{p^2}$ such that $q \mid (1+p+p^2+...p^{p-1})$.
- 2) Show that if q is as in 1) then $n^p \not\equiv p \pmod{q}$ for all integers n.

Problem 5: Show that there exists a natural number n which has exactly 2004 prime divisors and such that $n|(2^n+1)$. Hint: Show first that $3^k|(2^{3^k}+1)$ for every k.

Problem 6: 1) Prove that if a prime p divides $2^n - 1$ then n has a prime divisor smaller than p.

2) Suppose that natural numbers $n_1, n_2,...,n_k$ satisfy

$$n_1|2^{n_2}-1,\ n_2|2^{n_3}-1,\ ...,\ n_{k-1}|2^{n_k}-1,\ n_k|2^{n_1}-1.$$

Prove that $n_1 = n_2 = ... = n_k = 1$.

Problem 7: Let p be an odd prime number. For 0 < k < p denote by h_k the unique integer such that $0 < h_k < p$ and $kh_k \equiv 1 \pmod{p}$.

- 1) Prove that $p|(h_1 h_2 + h_3 ... \pm h_m)$, where m = [2p/3].
- 2) Use 1) to prove that $\binom{p}{1} + \binom{p}{2} + \ldots + \binom{p}{m}$ is divisible by p^2 , where $m = \lfloor 2p/3 \rfloor$. Hint: Show that $\binom{p-1}{k} \equiv (-1)^k \pmod{p}$.
- 3) Prove that $\frac{2^p-2}{p} \equiv h_{k+1} + h_{k+1} + \dots + h_{2k} \pmod{p}$, where p = 2k+1. Hint: Note that $2^p = \binom{p}{0} + \binom{p}{1} + \dots + \binom{p}{p}$.

1