
Problem A1: Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

Solution: Set r2 = x2 + y2. The intersection of this region with the plane z = t is

the set St of points (x, y, t) such that

0 ≥ r2 − 6r + t2 + 8 = (r − 3)2 + t2 − 1,

i.e.
3 −

√
1 − t2 ≤ r ≤ 3 +

√
1 − t2.

In other words, St is a ring with inner circle of radius 3 −
√

1 − t2 and outer circle of
radius 3 +

√
1 − t2. Thus the area of St is 12π

√
1 − t2. It follows that the volume in

question is equal to
∫ 1

−1

St dt =

∫ 1

−1

12π
√

1 − t2 dt = 6π2.

Problem A2: Alice and Bob play a game in which they take turns removing stones
from a heap that initially has n stones. The number of stones removed at each turn
must be one less than a prime number. The winner is the player who takes the last
stone. Alice plays first. Prove that there are infinitely many n such that Bob has a
winning strategy. (For example, if n = 17, then Alice might take 6 leaving 11; then
Bob might take 1 leaving 10; then Alice can take the remaining stones to win.)

Solution: Let us call n winning if Bob has a winning strategy. Call n loosing if Alice
has a winning strategy. The key observation is that each n is either winning or loosing.
In fact, 1 is loosing. If all positive integers smaller than n are either winning or loosing
then n is loosing if there is a prime p such that n + 1 − p is winning and n is winning
otherwise.

Suppose that the set W of all winning numbers is finite so there is k > 1 such that
every n ≥ k is loosing. This means that for every n ≥ k there is a prime p such that
n + 1 − p is winning. In particular, the distance of n + 1 to the nearest prime is at
most k for every n ≥ k. Note however that this is not possible since all the numbers
(k!)3 ± i are composite for i = 0, 1, 2, 3, ..., k.

Problem A3: Let 1, 2, 3, . . . , 2005, 2006, 2007, 2009, 2012, 2016, . . . be a sequence de-
fined by xk = k for k = 1, 2, . . . , 2006 and xk+1 = xk +xk−2005 for k ≥ 2006. Show that
the sequence has 2005 consecutive terms each divisible by 2006.

Solution: For k ≤ 0 define xk = xk+2006−xk+2005. Then xh is defined for every integer
and satisfies the recursive relation xk+1 = xk + xk−2005. Note that x0 = x−1 = ... =
x−2004 = 1 and x−2005 = x−2006 = ...x−4009 = 0. There are integers m and k > 0
such that xm+i − xm+i+k are divisible by 2006 for i = 0, 1, 2, ..., 2005. It follows from
the recursive formula by obvious induction that xn+k − xn is divisible by 2006 for all
n. Since x−4009, x−4008, ..., x−2005 are all divisible by 2006, the same is true for the 2005
numbers x5000k−4009, x5000k−4008, ..., x5000k−2005.
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Problem A4: Let S = {1, 2, . . . , n} for some integer n > 1. Say a permutation π of
S has a local maximum at k ∈ S if

(i) π(k) > π(k + 1) for k = 1;

(ii) π(k − 1) < π(k) and π(k) > π(k + 1) for 1 < k < n;

(iii) π(k − 1) < π(k) for k = n.

(For example, if n = 5 and π takes values at 1, 2, 3, 4, 5 of 2, 1, 4, 5, 3, then π has a local
maximum of 2 at k = 1, and a local maximum of 5 at k = 4.) What is the average
number of local maxima of a permutation of S, averaging over all permutations of S?

Solution: Let M(π) be the number of local maxima of π. For each k let pk be the
number of permutations which have a local maximum at k. The problem asks us to
evaluate

∑

π

M(π)/n!.

Note that
∑

π M(π) =
∑n

k=1 pk. The computation of pk is quite easy. To get a
permutation with a local maximum at 1 we need to choose two elements for π(1) > π(2),
which can be done in

(

n
2

)

ways and then order the remaining elements in (n−2)! ways,
so p1 =

(

n
2

)

(n − 2)! = n!/2 and the same argument shows that pn = n!/2. To get a
permutation with a local maximum at 1 < k < n we need to choose three elements
for π(k − 1) < π(k) > π(k + 1), which can be done in 2

(

n
3

)

ways and then order the
remaining elements in (n − 3)! ways. Thus pk = 2

(

n
3

)

(n − 3)! = n!/3. It follows that

n
∑

k=1

pk = 2 · n!

2
+ (n − 2)

n!

3
= n!

n + 1

3
.

The average number of local maxima is then equal to (n + 1)/3.

Problem A5: Let n be a positive odd integer and let θ be a real number such that
θ/π is irrational. Set ak = tan(θ + kπ/n), k = 1, 2, . . . , n. Prove that

a1 + a2 + · · ·+ an

a1a2 · · ·an

is an integer, and determine its value.

Solution: Recall that tan α = (e2iα − 1)/i(e2iα + 1). It follows that

ak =
e2i(θ+kπ/n) − 1

i(e2i(θ+kπ/n) + 1)
= i

e−2iθ − e2πik/n

e−2iθ + e2πik/n

Set z = e−2iθ. Recall that
∏n

i=1(z−e2πik/n) = zn−1 and
∏n

i=1(z+e2πik/n) = zn−(−1)n.
It follows that

a1a2...an = in
zn − 1

zn + 1
.
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Now

a1 + ... + an = i

n
∑

k=1

z − e2πik/n

z + e2πik/n

Note that

(zn + 1)
z − e2πik/n

z + e2πik/n

is a monic polynomial of degree n which vanishes at −e2πil/n for all 1 ≤ l ≤ n, l 6= k
and assumes value −2n at −e2πik/n (in general, if a is a root of a polynomial f(z) then
g(z) = f(z)/(z − a) is a polynomial and g(a) = f ′(a)). It follows that

(zn + 1)
n

∑

k=1

z − e2πik/n

z + e2πik/n

is polynomial of degree n, with leading coefficient n and it assumes value −2n at
−e2πil/n for all 1 ≤ l ≤ n. The same property has the polynomial n(zn − 1) so

(zn + 1)
n

∑

k=1

z − e2πik/n

z + e2πik/n
= n(zn − 1).

We see that

a1 + ... + an = in
zn − 1

zn + 1

and
a1 + a2 + · · ·+ an

a1a2 · · ·an
=

in

in
= (−1)(n−1)/2n.

Remark: From the equality

ak =
e2i(θ+kπ/n) − 1

i(e2i(θ+kπ/n) + 1)

we get that

e2i(θ+kπ/n) =
i − ak

i + ak

so
(i − ak)

n

(i + ak)n
= e2in(θ+kπ/n) = e2inθ

It follows that a1, ..., an are roots of the polynomial e2inθ(i + x)n − (i − x)n, i.e.

e2inθ(i + x)n − (i − x)n = (e2inθ + 1)(x − a1)...(x − an).

Comparing the coefficient at xn−k we see that

∑

i1<i2..<ik

ai1ai2 ...aik = (−1)k

(

n
k

)

ik(e2inθ − (−1)n−k)

e2inθ + 1
.

3



Problem A6: Four points are chosen uniformly and independently at random in the
interior of a given circle. Find the probability that they are the vertices of a convex
quadrilateral.

Solution: Let A1, A2, A3, A4 be the four random points in in a unit circle (clearly we
may assume that the circle has radius 1). The lines A1A2, A2A3 and A3A1 divide the
circle into 7 parts. Note that A1A2A3A4 is convex iff A4 is in one of the three parts
which contain exactly one of the sides of the triangle A1A2A3. So the probability that
A1A2A3A4 is convex is equal to the expected area of these three parts divided by π (the
area of the circle). Note that the expected area E of the triangle A1A2A3 divided by
π is the probability that Ar belongs to the triangle A1A2A3. The expected area Ei of
the part which intersects A1A2A3 only at the vertex Ai divided by π is the probability
that Ai is in the triangle AjAkA4 (here {1, 2, 3} = {i, j, k}). Thus E1 = E2 = E3 = E
and therefore the probability that A1A2A3A4 is convex is (π − 4E)/π = 1 − 4E/π. So
it suffices to compute E.

Consider the set

{S = (α, r, a, b, x, y) : α ∈ [0, 2π), 0 ≤ r ≤ 1, −
√

1 − r2 ≤ a, b ≤
√

1 − r2, x2+y2 ≤ 1}.

The map

F : (α, r, a, b, x, y) 7→ (a cos α+r sin α,−a sin α+r cos α, b cosα+r sin α,−b sin α+r cos α,

x cos α + y sin α,−x sin α + y cos α)

is a parametrization of the product T of three unit circles (the inverse map corresponds
to rotating the triangle with vertices A1, A2, A3 inside the unit circle to a triangle
A

′

1A
′

2A
′

3 such that the line A
′

1A
′

2 is parallel to the x-axis and above it; here A
′

1 = (a, r),
A

′

2 = (b, r), A
′

3 = (x, y); α is the angle of rotation). For a point t = (A1, A2, A3) of T ,
let A(t) be the area of A1A2A3. Thus the expected area of a random triangle in the
unit circle is

E = π−3

∫

T

A = π−3

∫

S

A ◦ F |JF |

where JF is the Jacobian of F . Note that A(F (α, r, a, b, x, y)) = |a−b||y−r|/2. Also it
is not hard to see that |JF | = |a−b| (this requires computation of a 6×6 determinant,
but it is not hard). Thus

E = π−3 1

2

∫ 2π

0

∫ 1

0

∫

D

∫

√
1−r2

−
√

1−r2

∫

√
1−r2

−
√

1−r2

(a − b)2|r − y|da db dx dy dr dα

where D = {x2 + y2 ≤ 1} is the unit circle. Since the angle is not involved in the
function under integral, after evaluation of the first two most-right integrals we get

E =
8

3
π−2

∫ 1

0

∫

D

|r − y|(1− r2)2dx dy dr.
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Now

∫

D

|r − y|dx dy =

∫ 1

−1

|r − y|
∫

√
1−y2

−
√

1−y2

dx dy = 2

∫ 1

−1

|r − y|
√

1 − y2 dy =

2[

∫ r

−1

(r − y)
√

1 − y2 dy +

∫ 1

r

(y − r)
√

1 − y2 dy] = 4r

∫ r

0

√

1 − y2 dy +
4

3
(1 − r2)3/2.

Thus

E =
8

3
π−2

∫ 1

0

(1 − r2)2[4r

∫ r

0

√

1 − y2 dy +
4

3
(1 − r2)3/2] dr.

Since the derivative of
∫ r

0

√

1 − y2dy is
√

1 − r2 and d
dr

(1 − r2)3 = −6r(1 − r2)2, inte-
gration by parts yields

∫ 1

0

(1 − r2)24r

∫ r

0

√

1 − y2 dy dr =
2

3

∫ 1

0

(1 − r2)7/2 dr.

Thus

E =
16

3
π−2

∫ 1

0

(1 − r2)7/2dr =
35

48π
.

The probability that four random points in a circle form a convex quadrilateral equals
then 1 − 35/12π2.

Problem B1: Show that the curve x3 + 3xy + y3 = 1 contains only one set of three
distinct points, A, B, and C, which are vertices of an equilateral triangle, and find its
area.

Solution: The key here is to realize that the curve is just a union of a line and a point.
Indeed, note that

x3+3xy+y3−1 = (x+y−1)(x2+y2−xy+x+y+1) = (x+y−1)((x+1)2+(y+1)2+(x−y)2)/2.

Thus our curve consists of the point (−1,−1) and the line x+y = 1. It is now clear that
any equilateral triangle with vertices on the curve must have vertex (−1,−1) and the
side opposite this vertex has midpoint (1/2, 1/2). Thus, there is unique such triangle,
its height is h = 3

√
2/2, its side is a = 2h/

√
3 =

√
6 and its area is ah/2 = 3

√
3/2.

Problem B2: Prove that, for every set X = {x1, x2, . . . , xn} of n real numbers, there
exists a non-empty subset S of X and an integer m such that

∣

∣

∣

∣

∣

m +
∑

s∈S

s

∣

∣

∣

∣

∣

≤ 1

n + 1
.

Solution: Consider the intervals [i/(n+1), (i+1)/(n+1)], i = 0, 1, ..., n. The problem
asks as to show that the fractional part of

∑

s∈S s belongs to either [0, 1/(n + 1)] or
[n/(n + 1), 1] for some non-empty S. If the fractional part of any of the numbers x1,
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x1 +x2, ..., x1 +x2 + ...+xn is in one of the intervals [0, 1/(n+1)] or [n/(n+1), 1] we are
done. Otherwise, each of these n fractional parts belongs to one of the remaining n−1
intervals. By pigeon-hole principle, there are 1 ≤ k < m ≤ n such that the fractional
parts of both x1 + ...+xk and x1 + ...+xm belong to the same interval. It follows then
that the fractional part of the difference (x1 + ...+xm)− (x1 + ...+xk) = xk+1 + ...+xm

is in one of the intervals [0, 1/(n + 1)] or [n/(n + 1), 1] .

Problem B3: Let S be a finite set of points in the plane. A linear partition of S is
an unordered pair {A, B} of subsets of S such that A ∪B = S, A ∩B = ∅, and A and
B lie on opposite sides of some straight line disjoint from S (A or B may be empty).
Let LS be the number of linear partitions of S. For each positive integer n, find the
maximum of LS over all sets S of n points.

Solution: For a point x let Lx
S be the number of linear partitions of S obtained by

lines through x. Consider a set S ′ of n+1 points and let S ′ = S∪{x} where S consists
of n points. Each liner partition of S ′ restricts to a linear partition of S. This is
surjective map from linear partitions of S ′ to linear partitions of S. If a linear partition
of S can be obtained from 2 different linear partitions of S ′ then it can be realized by
line through x and there are exactly 2 partitions of S ′ restricting to it. It follows that
LS′ = LS + Lx

S. Now for Lx
S rotate a line through x and note that you get at most n

partitions of S this way (you change a partition when you pass through a point of S),
and the equality holds if no three points of S ′ are collinear. Thus LS′ ≤ LS + n and
the equality holds if no three points of S ′ are collinear. A straightforward induction
shows now that LS ≤ 1 +

(

n
2

)

and equality holds if on three points of S are collinear.

Problem B4: Let Zn denote the set of points in R
n whose coordinates are 0 or 1.

(Thus Zn has 2n elements, which are the vertices of a unit hypercube in R
n.) Given

a vector subspace V of R
n, let Zn(V ) denote the number of members of Zn that lie in

V . Let k be given, 0 ≤ k ≤ n. Find the maximum, over all vector subspaces V ⊆ R
n

of dimension k, of the number of points in V ∩ Zn.)

Solution: Clearly the 2k points whose first n − k coordinates are 0 are in the k
dimensional subspace of all points whose first n − k coordinates are 0. Suppose we
have 2k + 1 of our points in a k dimensional subspace V . Consider the projection
R

n −→ R
n−1 given by (x1, ..., xn) 7→ (x1, ..., xn−1). Clearly it maps Zn onto Zn−1

and for each point of Zn−1 there are exactly 2 points of Zn mapped to it. If this
projection is injective on V then the image of V is a k-dimensional subspace of R

n−1

which contains 2k + 1 points of Zn−1. If the projection is not injective then the image
of V has dimension k − 1 and the image of Zn ∩ V contains at least 2k−1 + 1 different
points of Zn−1. Continuing this process we get an l dimensional subspace of R which
contains at lest 2l +1 elements of Z1. This is clearly false, so a k dimensional subspace
of R

n contains at most 2k elements of Zn.

Problem B5: For each continuous function f : [0, 1] → R, let I(f) =
∫ 1

0
x2f(x) dx

and J(x) =
∫ 1

0
x (f(x))2 dx. Find the maximum value of I(f) − J(f) over all such

functions f .
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Solution: Recall that ab ≤ (a+b)2/4 for any real numbers a, b. In particular, f(x)(x−
f(x)) ≤ x2/4 for all x. Thus

I(f)−J(f) =

∫ 1

0

(x2f(x)−x (f(x))2) dx =

∫ 1

0

xf(x)(x−f(x)) dx ≤
∫ 1

0

x3/4 dx = 1/16.

and the equality holds for f(x) = x/2.

Problem B6: Let k be an integer greater than 1. Suppose that a0 > 0 and define

an+1 = an +
1

k
√

an

for n ≥ 0. Evaluate

lim
n→∞

ak+1
n

nk
.

Solution: Let f(x) = x + x−1/k. Clearly f(x) > 1, f is increasing on (1,∞) and
f(x) > 2 for x > 1. Let c = (k + 1/k)k/k+1. We claim that f(cxk/k+1) ≥ c(x + 1)k/k+1.
In fact, this is equivalent to

c
k+1

k x + 1 =
k + 1

k
(x +

k

k + 1
) ≥ k + 1

k
x

1

k+1 (x + 1)
k

k+1 ,

i.e. to

x +
k

k + 1
≥ x

1

k+1 (x + 1)
k

k+1 .

This follows from the generalized AMGM inequality:

x
1

k+1 (x + 1)
k

k+1 ≤ 1

k + 1
x +

k

k + 1
(x + 1) = x +

k

k + 1
.

It is clear that an increases and hence tends to infinity (pass to the limit in the
recursion formula for an). There is an m such that am > c and then easy induction
and the inequality above yield that

am+n ≥ c(n + 1)k/k+1 (∗).

On the other hand, using (∗) we get

am+n = am+1 +

n−1
∑

i=1

1

a
1/k
m+i

≤ am+1 +
1

c1/k

n
∑

i=2

1

i1/(k+1)
≤ am+1 +

1

c1/k

∫ n

1

dx

x1/(k+1)
≤

≤ am+1 +
1

c1/k

k + 1

k
(nk/k+1 − 1) ≤ am+1 + cnk/k+1

(since 1
c1/k

k+1
k

= c). Thus we proved that

am+1 + cnk/k+1 ≥ am+n ≥ c(n + 1)k/k+1.
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Pinching theorem yields now that

lim
n→∞

an

nk/k+1
= c

and therefore

lim
n→∞

ak+1
n

nk
= ck+1 = (

k + 1

k
)k.

Remark 1 Set bn = am+n/nk/k+1. We claim that bn is decreasing. In fact,

bn+1/bn = (1 + a
−(k+1)/k
m+n )(

n

n + 1
)k/(k+1) ≤ 1

is equivalent to

a
(k+1)/k
m+n ≥ nk/k+1

(n + 1)k/k+1 − nk/k+1
.

Since the mean value theorem yields (n + 1)k/k+1 − nk/k+1 = (k/(k + 1))u−1/(k+1) for
some n ≤ u ≤ n + 1 and nk/k+1u1/(k+1) ≤ n + 1, it suffices to show that

a
(k+1)/k
m+n ≥ k + 1

k
(n + 1),

which is equivalent to (∗).
Remark 2 The limit can be computed easily using the following Stolz Theorem (an
analog of L’Hospitals rule for sequences)

Stolz Theorem If an, bn are sequences such that bn is increasing and unbounded and

lim
n→∞

an+1 − an

bn+1 − bn

= g

exists, then

lim
n→∞

an

bn
= g.

Let us apply it to our sequence a
k+1/k
n and bn = n so the problem reduces to finding

the limit of a
k+1/k
n+1 − a

k+1/k
n . The Mean Value theorem for the function xk+1/k implies

that

a
k+1/k
n+1 − ak+1/k

n =
k + 1

k
u1/k

n (an+1 − an) =
k + 1

k
u1/k

n a−1/k
n

for some an ≤ un ≤ an+1. Since an+1/an converges to 1, we see that un/an converges
to 1 and therefore

lim
n→∞

ak+1/k
n /n = lim

n→∞
(a

k+1/k
n+1 − ak+1/k

n ) =
k + 1

k
.
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