
Homework
due on Wednesday, November 28

Problem 1. Prove that
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Problem 2. Let a1, a2, a3, a4, a5 be positive real numbers such that a1 + a2 + a3 +

a4 + a5 = 1. Prove that
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Problem 3. A polynomial of degree 11 whose 11 roots form an arithmetic pro-

gression was written on a piece of paper. Due to an unfortunate accident most

of the paper was lost and only the first three terms of the polynomial survieved:

x11 + 6x10 + 5x9 + .... Find all the roots of this polynomial.

Problem 4. Find all polynomials whose all coefficients belong to the set {−1, 1}
and whose all roots are real.

Problem 5. Let P (x) be a polynomial of degree n with n pairwise distinct roots
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Happy Thanksgiving!
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