Solutions to Exam 1

Problem 1. Prove that there is no integer n > 2 such that n(n + 6) is a square of

an integer.

Solution. Note that for any n we have
(n+3)?=n*+6n+9>n%+6n=n(n+06).
On the other hand,
(n+2?=n*+4n+4=n>+6n+4—2n=n(n+6)—2(n—2) <n(n+6)

provided n — 2 > 0, i.e. n > 2. Thus, for n > 2, the number n(n + 6) is contained

between two consecutive squares (n + 2)? and (n + 3)?, hence it is not a square.

Problem 2. Compute the integral
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Be very careful with your algebra. Note: sin(r — ¢) = sint.

Solution. Do the substitution x = 1 — y and use the fact that sinw(1 —y) = sinmy
and (1—y)?—(1—y)+1=9y*—y+1 toget
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(we replaced y by z in the last integral). It follows that
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Problem 3. Let n be a positive integer. Let dy, ..., d; be all divisors of n. Prove

that the number
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is an integer.



Solution. The main observation is that the divisors of n come in pairs: if d is a
divisor then so is n/d. Thus the sequences n/dy,n/ds, ... ,n/dy and dy, ..., dy both

list all divisors of n (just in different order). We may then write

lnd1+lnd2+...+1ndk:lnﬁ—i-lnﬁ—i-...—i-lnﬁ
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and consequently
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Observe now that Ind +1In % = Inn for any d. It follows that 2(Ind; +Indy + ... +

Indy) = klnn and therefore
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is an integer.

Problem 4. Compute the sum
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Solution: Note that if k£ changes from 0 to 2010 then 2010 — k changes from 2010

to 0. Thus we have
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(this is analogous to change of variables in integrals; we simply are summing the

terms from the end). Note that
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and similarly
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It follows that
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Problem 5. There are 28 points selected in an equilateral triangle with side of
length 3. Prove that there are 4 among these points which are within distance 1 to

each other.

Solution: Divide the triangle into 9 equilateral triangles with side of length 1 (by
dividing each side of the triangle into 3 equal pieces and drawing through the points
of division lines parallel to the sides of the triangle). By the pigeon-hole principle,
one of the small triangles must contain at least [%} = 4 of the selected points and

then any two of these 4 points are no further than 1 apart.

Problem 6. A set of 10 different numbers is selected from {1,2,...,18}. Prove

that among the selected integers there are two numbers which differ by 3.

Solution: Consider the following nine sets:
{1,4},{2,5},{3,6},{7,10}, {8,11},{9, 12}, {13,16}, {14, 17}, {15, 18}.

Each of the 10 chosen numbers belongs to exactly one of the nine sets. By the
pigeon-hole principle, some two of the chosen numbers are in the same set, so they
differ by 3.



