Homework

due on Thursday, March 6

Rad carefully the first three chapters of Dunham's book. Solve the following problems.

Problem 1. As discussed in class, Pythagoras and his follower are credited with the study of perfect numbers. In Euclid's *Elements* the following result is proved:

Theorem 1. Let n be a positive integer such that $2^{n+1} - 1$ is a prime number. Then the number $2^n(2^{n+1} - 1)$ is perfect.

- a) Prove this theorem (Hint: what are the proper divisors of $2^n p$ when p is a prime number? what is their sum?).
- b) Prove conversely, that if a number of the form $2^n(2^{n+1}-1)$ is perfect then $2^{n+1}-1$ is a prime number.
- c) Prove that if $2^m 1$ is a prime then so is m (Hint: do a proof by contrapositive, i.e. show that if m is composite then so is $2^m 1$).

Problem 2. Here is quadrature of the second lune considered by Hippocrates.

- a) Construct a trapezium ABCD such that $AB = \sqrt{3}$, BC = CD = DA = 1. The construction should be given as a "recipe" followed by explanation and justification of each step. (Use 1 inch or 3 cm as a unit).
- b) Construct the circle c_1 circumscribed about ABCD. Let O be its center.
- c) Construct a point E on the opposite side of the line AB than C such that the triangles EAB and OCD are similar. Let c_2 be the circle with center E and radius EA. Prove that the lune determined by circles c_1 and c_2 has area equal to the area of AEBO.
- d) Perform quadrature of AEBO.

Problem 3. Consider an isosceles triangle with base of length 18 and height of length 16. Divide this triangle into several polygonal pieces from which a square of side 12 can be assembled (use 1 cm as a unit). Explain your solution carefully and provide the actual pieces made out of a thin cardboard (or paper).