Homework 6

due on Monday, May 9

Read carefully sections 12.1, 12.2, 12.3 in the book.

Solve the following problems.

Problem 1. Let R be a PID. For an R-module M and a maximal ideal $J = (\pi)$ define $M_J = \{m \in M : \pi^k m = 0 \text{ for some } k > 0\}.$

a) Show that M_J is a submodule of M. It is called the *J*-primary component of M (if M is an abelian group and $J = p\mathbb{Z}$ with p a prime number then M_J is the Sylow *p*-subgroup of M).

b) Prove that the torsion submodule T(M) is the direct sum of the *J*-primary components, where *J* runs through the maximal ideals of *R* (this may be an infinite direct sum, since we do not assume here that *M* is finitely generated). If *M* is finitely generated, show that M_J is non-zero for a finite number of maximal ideals *J*.

c) Recall that a finitely generated torsion R-module T is a direct sum of cyclic modules of the form $R/(\pi^k)$ for some prime element π and some k. Show that T_J is the direct sum of all factors for which $(\pi) = J$. Conclude that to show the uniqueness of the elementary divisors for T it suffices to show that for each maximal ideal J and each decomposition of T_J into a direct sum of cyclic modules the number N(J,k) of direct summands isomorphic to R/J^k is independent of the decomposition.

d) Suppose that $T_J \approx R/J^{k_1} \oplus R/J^{k_2} \oplus \ldots \oplus R/J^{k_s}$ for some $k_1 \leq k_2 \leq \ldots \leq k_s$. Show that $JT_J \approx R/J^{k_1-1} \oplus R/J^{k_2-1} \oplus \ldots \oplus R/J^{k_s-1}$ and $T_J/JT_J \approx R/J \oplus R/J \oplus \ldots \oplus R/J$ (s times). Note that T_J/JT_J is an R/J-module, i.e. a vector space over the field R/J and conclude that s is the dimension of this vector space.

e) Conclude from d) that for every natural number k the integer S(k, J) := N(J, k) + N(J, k + 1) + N(J, k + 2) + ... is the dimension of the R/J-vector space $J^{k-1}T_J/J^kT_J$, hence it does not depend on the choice of the decomposition. Since N(J, k) = S(J, k) - S(J, k + 1), the uniqueness of the elementary divisors follows.

Problem 2. Let R be a PID. Suppose that M is a torsion R-module and $m \in M$ is such that $\operatorname{ann}(m) = (r) = \operatorname{ann}(M)$.

a) Show that in the set of all submodules of M which intersect $\langle m \rangle$ trivially there is a maximal element N (with respect to inclusion). The next steps will show that M is the direct sum of $\langle m \rangle$ and N. Show that this is equivalent to the statement that $M/N = \langle m + N \rangle$ is a cyclic module.

b) Show that $\operatorname{ann}(m+N) = (r) = \operatorname{ann}(M/N)$ and for every non-zero element $x \in M/N$ the cyclic modules $\langle x \rangle$ and $\langle m+N \rangle$ have non-trivial intersection.

c) Suppose that M is a torsion R-module and $m \in M$ is such that $\operatorname{ann}(m) = (r) = \operatorname{ann}(M)$. For $0 \neq n \in M$ consider the set $I = \{a \in R : an \in \langle m \rangle\}$. Show that it is an ideal of R which contains r. Let b be a generator of I, so b|r. Note that bn = cm for some $c \in R$. Show that r divides (r/b)c and conclude that b|c. Prove that $\langle m \rangle \cap \langle n - (c/b)m \rangle = \{0\}$.

d) Use c) to show that in b) we have $M/N = \langle m + N \rangle$.

e) Show that if M is finitely generated then m with the required property exists (do not use the results about decomposition into a direct sum of cyclic modules).

This problem gives a different proof of the fact that a finitely generated torsion module is a direct sum of cyclic modules.

Problem 3. Find the rank, the invariant factors and the elementary divisors of the group \mathbb{Z}^4/H , where *H* is generated by (-1, -2, -3, -4), (3, 8, 5, 6), (-1, 0, -13, -16), (-3, -4, -13, -6). (Find a compatible bases of \mathbb{Z}^4 and *H*).