
Solutions to the Midterm

Solution to Problem 1. Let H be a subgroup of a group G such that every

element of H commutes with every element of [G,G]. For g ∈ G consider the

function fg : H −→ G defined by fg(h) = [h, g] = h−1g−1hg. Note that

fg(h1h2) = [h1h2, g] = h−1
2 h−1

1 g−1h1h2g = h−1
2 [h1, g]h2[h2, g] = h−1

2 fg(h1)h2fg(h2)

Since fg(h1) belongs to [G,G], it commutes with all elements of H. In particular,

h−1
2 fg(h1)h2 = fg(h1) and therefore

fg(h1h2) = fg(h1)fg(h2)

which proves that fg is a homomorphism.

In order to prove that the image of fg is abelian we first make the following

observation. If φ is an automorphism of G then every element of φ(H) commutes

with every element of φ([G,G])). Recall now that [G,G] is a characteristic subgroup

of G, so φ([G,G]) = [G,G]. Thus every element in φ(H) commutes with all elements

in [G,G]. We apply this to the inner automorphism φ(x) = g−1xg. Note that

fg(h) = h−1φ(h) and since both h−1 and φ(h) commute with all elements in [G,G],

so does fg(h). If h1 is another element of H then fg(h1) ∈ [G,G] and therefore fg(h)

and fg(h1) commute. This shows that the image of fg is an abelian group.

It follows that [H,H] ⊆ ker fg, i.e g commutes with all elements in [H,H]. Since

this holds for every g ∈ G, we see that [H,H] is contained in the center of G.

Solution to Problem 2. Let f be an automorphism of a finite group G such that

f(g) = g−1 for some nonidentity element g of order larger than 2. Let k be the order

of f , so fk is the identity. In particular, g = f k(g) = f(f(f...(f(g))...)) = g(−1)k

.

Since the order of g is larger than 2, we have g 6= g−1. It follows that (−1)k = 1,

i.e. k is even.

Suppose now that g and g−1 are conjugate so g−1 = aga−1 for some a ∈ G.

Consider the inner automorphism f(x) = axa−1. By the first part of our solution,

f must have even order. But the order of f divides the order of a (recall that f is

the image of a under the natural homomorphism G −→ InnG), so a has even order

contrary to our assumption that the order of G is odd. Thus g and g−1 cannot be

conjugate.
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Solution to Problem 3. Let A, B be finite index subgroups of a group G. By the

very definition,

AB =
⋃

a∈A

aB.

Note that for a1, a2 ∈ A we have a1B = a2B iff a−1
2 a1 ∈ B i.e. iff a−1

2 a1 ∈ A ∩ B.

It follows that among the left cosets aB with a ∈ A there are exactly [A : A ∩ B]

different cosets. Thus AB is a union of [A : A ∩ B] different left cosets of B in G.

Since AB is a subset of G and G is the union of [G : B] distinct left cosets of B in

G, we see that [A : A ∩ B] ≤ [G : B] and the equality holds iff G = AB.

Suppose now that [G : A] and [G : B] are relatively prime. Note that

[G : A][A : A ∩ B] = [G : A ∩ B] = [G : B][B : A ∩ B].

In particular, [G : B]|[G : A][A : A ∩ B]. Since [G : A] and [G : B] are relatively

prime, we conclude that [G : B]|[A : A∩B]. Consequently, [G : B] ≤ [A : A∩B]. As

we observed above, the converse inequality is always true, so [A : A ∩ B] = [G : B]

and G = AB.

Solution to Problem 4. Let G be a group of order 525. We will show that G has

a normal Sylow 5-subgroup. The number t5 of Sylow 5-subgroups of G divides 21

and is congruent to 1 modulo 5. It follows that t5 = 1 or t5 = 21. Suppose that

t5 = 21. Let P , Q be distinct Sylow 5-subgroups. If P ∩ Q = {1} then the set PQ

has 252 > 525 elements, which is not possible. Thus any two Sylow 5-subgroups

have non-trivial intersection. Let R = P ∩ Q. Since both P and Q are abelian,

the centralizer CG(R) contains both P and Q. Thus P and Q are distinct Sylow

5-subgroups of CG(P ). Furthermore, CG(R) has order 3 · 25, 7 · 25 or 525. But

in the first two cases Sylow’s theorem implies that CG(R) has unique (i.e normal)

Sylow 5-subgroup, which is not possible. Thus only the third case is possible, i.e

CG(R) = G. Thus R is normal (even central) in G. Since all Sylow 5-subgroups

are conjugate, they all contain R. It follows that R is the intersection of any two

distinct Sylow 5-subgroups of G. Hence the number of elements of order 5 or 25 in

G is 4 + 21 · 20 = 424.

We show now that both t7 > 1 and t3 > 1, i.e. Sylow 3-subgroups and Sylow

7-subgroups are not normal. In fact, suppose that N is a normal Sylow q-subgroup
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of G with q = 3 or q = 7. Any Sylow 5-subgroup P of G acts on N by conjugation.

But 5 - (q − 1) (which is the order of the group of automorphisms of N), so the

action is trivial, i.e. P centralizes N . Thus N is contained in the normalizer (even

centralizer) of P . This is however not possible, since t5 = 21 implies that the

normalizer of P has index 21 i.e. is equal to P . The contradiction shows that both

t7 > 1 and t3 > 1. Sylow Theorem implies now that t7 = 15 and t3 ≥ 7. Thus G

has 6 · 15 = 90 elements of order 7 and at least 2 · 7 = 14 elements of order 3. This

means that G has at least 424 + 90 + 14 + 1 = 529 elements, a contradiction. This

shows that our assumption that t5 = 21 is wrong, i.e t5 = 1.

Remark. There are several other ways of proving that t5 = 1. For example, after

showing that R is normal, we could look at the factor group H = G/R of order 105.

It is not hard to show that a group of order 105 has a normal Sylow 5-subgroup and

this implies that G has a normal Sylow 5-subgroup (by correspondence theorem).

We see that G has a normal subgroup P of order 25. Clearly P is solvable (even

abelian). The group K = G/P has order 21. Thus K has a normal Sylow 7-subgroup

B and K/B has order 3. Thus both B and K/B are cyclic, hence solvable. It follows

that K = G/P is solvable and since P is solvable, so is G.

Remark. To show that G is solvable after proving only that G is not simple

(as suggested in the problem) start with a normal subgroup H of G and show that

both H and G/H are solvable. There are several cases to consider (the order of H

can be 3,5,7, ...0) , but they are all fairly simple.
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