
BASIC CONSEPTS OF GROUP THEORY

Recall that a group is a set G with a distinguished element e and a function

G×G −→ G, (g, h) 7→ gh such that

(1) (ab)c = a(bc) for all a, b, c ∈ G;

(2) ae = a = ea for all a ∈ G;

(3) for every a ∈ G there is b ∈ G such that ab = e = ba.

A group G is called commutative or Abelian if ab = ba for all a, b ∈ G.

Remarks. 1. The element e is the unique element in G with the property ae = a

for some a ∈ G (but one needs to know first that G is a group).

2. For given a ∈ G the element b in 3) is unique. It is denoted by a−1 and called

the inverse of a.

For g ∈ G and a positive integer n define gn = gg...g (n−times). Furthemore, define

g0 = e and g−n = (g−1)n. Then the usual rules gmgn = gm+n and (gm)n = gmn hold

for any integers m,n and any g ∈ G.

An element g ∈ G is called of finite order or torsion if there is n 6= 0 such that

gn = e; if no such n exists g is said to be of infinite order. If g is of finite order

then the smallest positive n such that gn = e is called the oreder of g.

A subgroup of a group G is a nonempty subset H ⊆ G such that for all a, b ∈ H

also ab and a−1 belong to H. These conditions imply that e ∈ H and that H with

mutiplication inherited from G is a group. If H is a subgroup of G we write H < G.

The intersection of any collection of subgroups of G is again a subgroup. In

particular, if S is any subset of G then the intersection of all subgroups of G which

contain S is the smallest subgroup of G which contains S. We deonote it by < S >

and call it the subgroup generated by S. It is not hard to see that < S > conists

exactly of those elements of G which can be written as su1

1 s
u2

2 ...s
um

m
for some si ∈ S

and ui = ±1. In particular,if S = {g} then < S >=< g >= {gm : m ∈ Z} is the set

of all powers of g.
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We say that a subset S of G generates G if < S >= G. A group G is called

finitely generated if there is a finite set S ⊆ G which generates G. If G =< g >

for some g ∈ G then G is called cyclic.

If A,B are subsets of a group G then AB = {ab : a ∈ A and b ∈ B}.

Let H < G. A set of the form gH = {gh : h ∈ H} for some g ∈ G is called a left

coset of H in G. A right coset of H in G is a set of the form Hg = {hg : h ∈ H}

for some g ∈ G. Two left (right) cosets of H in G are either disjoint or coincide.

Thus the left (right) cosets of H partition the group G. If aH, bH are two left

cosets then there is a bijection from aH to bH given by left multiplication by ba−1.

In particular, if H is finite then all left cosets have the same number of elements

equal to |H|, and of course the same is true for right cosets. If moreover G is finite,

then since the left (right) cosets partition G, we see that |G| = |H|[G : H], where

[G : H] is the number of left (right) cosets of H. This result is usually referred to

as Lagranges Theorem. In particular, if G is finite and H < G then |H|||G|.

A subgroup H of G is called normal if gH = Hg for every g ∈ G. We write

H / G to indicate that H is normal in G. Here are some equivalent conditions for

H to be normal:

• gHg−1 = H for all g ∈ G;

• gHg−1 ⊆ H for all g ∈ G;

• ghg−1 ∈ H for every g ∈ G and h ∈ H.

Exercise. Show that H / G iff the sets of right and left cosets of H coincide.

Examples of normal subgroups. In every group G, the trivial subgroup {e} and

the whole group G are normal subgroups of G. If a group does not have any other

normal subgroups it is called a simple group.

There are many constructions of normal subgroups in a group G which often lead

to a nontrivial subgroups. We will learn many of them later, but let us introduce

two such constructions now, since they play a fundamental role in group theory.

If G is a group then the subset Z(G) which consists of all elements which commute

with every element in G is called the center of G. Thus Z(G) = {g ∈ G : gh =

hg for all h ∈ H}. It is an easy exercise to show that the center is a normal subgroup

of G. Note that Z(G) = G iff G is abelian.
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For any two elements g, h in a group G we define the commutator [g, h] by the

formula [g, h] = g−1h−1gh. Thus [g, h] = e iff the elements g, h commute. The

derived group or commutator group of G is the group [G,G] generated by the

set of all commutators in G. This group is often denoted by G′. More generally, if

X, Y are nonempty subsets of G, one writes [X,Y ] for the subgroup of G generated

by all commutators of the form [x, y] with x ∈ X and Y ∈ Y .

From the identity a[g, h]a−1 = [aga−1, aha−1] one deduces easily that [G,G] is a

normal subgroup of G. Note that [G,G] = {e} iff G is abelian. A group is called

perfect if [G,G] = G.

Let H / G and set G/H for the set of left cosets of H in G (which is the same

as the set of right cosets). Note that for any a, b ∈ G we have (aH)(bH) = (ab)H.

It follows that if A,B ∈ G/H then AB ∈ G/H and the operation (A,B) 7→ AB

defines a group structure on the set G/H. This group is called the quotient group

(or factor group) of G by H. We see that if G is finite then |G/H| = [G : H]. The

construction of quotient groups is of fundamental importance in group theory.

Exercise. Prove that G/H is abelian iff [G,G] ⊆ H.

If G,H are groups then a homomorphism fromG toH is a function f : G −→ H

such that f(ab) = f(a)f(b) for any a, b ∈ G. This implies that f(eG) = eH and

f(a−1) = f(a)−1. An injective (surjective) homomorphism is called a monomor-

phism (epimorphism). A bijective homomorphism is called an isomorphism and

an isomorphism from G to G is called an automorphism.

The image f(G) of a homomorphism f is a subgroup of H and the set ker f =

{g ∈ G : f(g) = 0} is a normal subgroup of G called the kernel of f . It is easy to see

that f is a monomorphism iff ker f = {e}. Moreover, if f(g) = h then the preimage

f−1(h) is the coset g ker f . Note that the image f(G) is abelian iff [G,G] ⊆ ker f .

Suppose that K / G. The natural map ψ : G −→ G/K given by ψ(a) = aK is

an epimorphism with kernel K. The map ψ is often called the projection or the

quotient map from G to G/K.

The following results are very useful when dealing with quotient groups and ho-

momorphisms.
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First Homomorphism Theorem. Let f : G −→ H be a homomorphism andK/G

be such that K ⊆ ker f . Set ψ for the quotient map G −→ G/K. There is unique

homomorphism φ : G/K −→ H such that f = φψ. It is defined by φ(aK) = f(a)

for all a ∈ G. Moreover, φ(G/K) = f(G) and kerφ = ψ(ker f) = ker f/K.

Of special interest is the case when K = ker f . Then we see that kerφ is trivial,

so φ is a monomorphism which identifies f(G) and G/ ker f . In particular, if f is

surjective then H and G/ ker f are isomorphic.

Correspondence Theorem. Let f : G −→ H be an epimorphism with kernel

K = ker f . If L < G then the image f(L) < H. Conversely, if N is a subgroup of

H then f−1(N) is a subgroup of G which contains K. Note that f−1(f(L)) = KL.

This defines a bijective correspondence between subgroups of G which contain K

and subgroups of H. Under this correspondence normal subgroups correspond to

normal subgroups and the inclusion is preserved.

Second Homomorphism Theorem. Suppose that K / G, H < G and A / H.

The natural map ψ : H −→ HK/AK given by ψ(h) = h(AK) is surjective and

has kernel A(H ∩K). In particular, A(H ∩K) is a normal subgroup of H and the

groups H/A(H ∩K) and HK/AK are naturally isomorphic.

A special case is when A is trivial. Then we see that H/H ∩K and HK/K are

naturally isomorphic.

Third Homomorphism Theorem. Let N /G, K /G and N ⊆ K. Then K/N is

a normal subgroup of G/N and the groups G/K and (G/N)/(K/N) are naturally

isomorphic by gK 7→ (gN)(K/N).


