
NORMAL AND SUBNORMAL SERIES

Let G be a group. A subnormal series of subgroups of G is a sequence G0 =

{e} < G1 < ... < Gn = G such that Gi−1 / Gi for i = 1, ..., n. A normal series

is a subnormal series such that each Gi is normal in G. The number n is called

the length of the (sub)normal series. A (sub)normal series is called proper if all

the quotient groups Gi/Gi−1 are nontrivial. These quotient groups are refered to as

successive quotients of the (sub)normal series.

We say that two (sub)normal series are equivalent if they have the same length

and there is a permutation π ∈ Sn such that the groups Gi/Gi−1 and Gπ(i)/Gπ(i)−1

are isomorphic for all i = 1, 2, ..., n.

A refinement of a (sub)normal series G0 = {e} < G1 < ... < Gn = G is a

(sub)normal series G′

0 = {e} < G′

1 < ... < G′

m = G such that there is a strictly

increasing function f : {1, ..., n} −→ {1, 2, ...,m} such that Gi = G′

f(i) for all i.

We prove now the following important theorem:

Schreier Refinement Theorem. Any two (sub)normal series in G have equivalent

refinements. It the series are proper, the refinements can be chosen proper as well.

Proof: Note first that each integer k can be uniquely written in the form (m+1)i+j

for some integer i and some j ∈ {0, ...,m}. If 0 ≤ k < (m+1)(n+1) then 0 ≤ i ≤ n.

Similarly, each integer 0 ≤ k < (m + 1)(n + 1) can be uniquely written in the form

(n + 1)j + i, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

For 1 ≤ k < (m+1)(n+1) write k = (m+1)i+j as above and set f(k) = (n+1)j+i.

It is clear that f is a bijection of the set {1, ...,mn + m + n}.

Let G0 = {e} < G1 < ... < Gn = G and G′

0 = {e} < G′

1 < ... < G′

m = G be

(sub)normal series.

Define H(m+1)i+j = (Gi∩G′

j)Gi−1 for i = 0, ..., n and j = 0, ...,m (the groups with

negative indexes are by definition trivial).

Similarly, define H ′

(n+1)j+i = (G′

j ∩ Gi)G
′

j−1 for i = 0, ..., n and j = 0, ...,m.
1
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It is clear that H0 = {e} < H1 < ... < Hmn+m+n = G and H ′

0 = {e} < H ′

1 <

... < H ′

mn+m+n = G are (sub)normal series which are refinements of G0 = {e} <

G1 < ... < Gn = G and G′

0 = {e} < G′

1 < ... < G′

m = G respectively. To see

this note that H(m+1)i+m = Gi and H ′

(n+1)j+n = G′

j. We claim that these series are

equivalent. More precisely, the groups Hk/Hk−1 and H ′

f(k)/H
′

f(k)−1 are isomorphic

for k = 1, ...,mn + m + n. Indeed, let k = (m + 1)i + j. If j 6= 0 then

Hk/Hk−1 = (Gi ∩ G′

j)Gi−1/(Gi ∩ G′

j−1)Gi−1

We apply the second homomorphism theorem to the group A = Gi, its subgroups

M = (Gi ∩ G′

j−1) / (Gi ∩ G′

j) = N and its normal subgroup Gi−1 = B. Recall

that the second homomorphism theorem says that NB/MB and N/M(N ∩ B) are

isomorphic. In our case this means that

Hk/Hk−1 ≈ (Gi ∩ G′

j)/(Gi ∩ G′

j−1)(Gi−1 ∩ G′

j).

If j = 0 the above formula still holds since in this case both sides are trivial groups.

Note now that f(k) = (n+1)j + i and exactly the same argument as above shows

that

H ′

f(k)/H
′

f(k)−1 ≈ (G′

j ∩ Gi)/(G′

j ∩ Gi−1)(G
′

j−1 ∩ Gi).

Since both G′

j ∩Gi−1 and G′

j−1 ∩Gi are normal subgroups of G′

j ∩Gi = Gi ∩G′

j, we

have (G′

j ∩ Gi−1)(G
′

j−1 ∩ Gi) = (Gi ∩ G′

j−1)(Gi−1 ∩ G′

j). It follows that the groups

Hk/Hk−1 and H ′

f(k)/H
′

f(k)−1 are indeed isomorphic.

This shows that H0 = {e} < H1 < ... < Hmn+m+n = G and H ′

0 = {e} < H ′

1 <

... < H ′

mn+m+n = G are equivalent refinements of G0 = {e} < G1 < ... < Gn = G

and G′

0 = {e} < G′

1 < ... < G′

m = G respectively. But this refinements are usually

not proper even if the original series were proper. To end the proof it remains to

make a rather obvious remark that omitting all repetitions in a (sub)normal series

produces a proper (sub)normal series. Moreover

• this procedure applied to a refinement of a proper series results in another

refinement which is proper;

• this procedure applied to equivalent series results in equivalent series. 2

A subnormal series is called a composition series if it is proper and does not

have any nontrivial proper refinements. In other words, a composition series is a
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subnormal series G0 = {e} < ... < Gn = G such that Gi/Gi−1 is a nontrivial simple

group for all i.

As an immediate consequence of the Schreier Refinement Theorem we get the

following important result:

Jordan-Hölder Theorem. Any two composition series of a group G are equivalent.

Proof: By the Schreier Refinement Theorem, the two composition series have

equivalent proper refinements. Since composition series by definition do not have

any nontrivial proper refinements, the result follows. 2

As a consequence we see that the groups which appear as quotients of consequtive

members of a composition series do not depend on the particular composition series.

These groups are called composition factors of G. Also, the length of a series of G

is independent on the composition series and it is called the composition length

of G.

Not all groups have composition series. For example, Z has no composition series

since every nontrivial subgroup of Z is isomorphic to Z, hence it is not simple (and

in any composition series G1 is simple).

On the other hand, we have the following

Theorem 1. a) Finite groups have composition series.

b) Let G be a group and H its normal subgroup. Then G has composition series iff

both H and G/H have composition series. Moreover, the composition length of G is

the sum of composition lengths of H and G/H.

Proof: a) Use induction on the order of G. G has a maximal proper normal

subgroup H and then G/H is simple. If G0 = {e} < ... < Gn = H is a composition

series for H then G0 < ... < Gn < Gn+1 = G is a composition series for G.

(Alternatively, note that any proper subnormal series of G has length bounded

above by |G|, so there is a subnormal series with no proper nontrivial refinements.).

b) Exercise. 2

Exercise. Prove that the group GLn(F ) has composition series iff F is finite.

Exercise. Prove that an abelian group has composition series iff it is finite.
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Exercise. Find all composition series of Sn.

Exercise. Let F be a finite field with p elements, p−a prime. Find a composition

series for the group UTn(F ) of unipotent upper-triangular matrices.

Exercise. A chief series of G is a normal series which is proper and does not have

any proper nontrivial refinement (which is a normal series).

a) Show that any two chief series of G are equivalent.

b) Prove that if G has a composition series then it has a chief series. Is the converse

true?

c) A chief factor of G is a group isomorphic to the quotient of two consecutive

members of a chief series of G. Show that if G has a composition series then any

chief factor of G has is a direct product of some finite number of copies of a simple

group.

1. Solvable and nilpotent groups

.

Let G be a group. We define a sequence of subgroups of G inductively as follows:

G(0) = G, G(i+1) = [G(i), G(i)], i.e. each term of this sequence is the derived group of

the previous term. This sequence is called the derived series of G. It is clear that

G(i)/G(i+1) is abelian for all i.

A group G is called solvable if G(i) = {e} for some i. The smallest i for which

this happens is called the solvability class of G.

Solvable groups have many normal subgroups so they are in a sense opposite to

simple groups. A simple group is solvable iff it is abelian (hence cyclic of prime

order). The class of solvable groups is very important. We have the following

characterization of solvable groups.

Theorem 2. The following conditions are equivalent:

(1) G is solvable;

(2) G has a normal series in which all successive quotients are abelian;

(3) G has a subnormal series in which every successive quotient is abelian.
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Proof: The implications (1) ⇒ (2) follows from the obvious fact that if G is

solvable then the derived series is a normal series. That (2) ⇒ (3) is clear.

If G0 < ... < Gn is a subnormal series with abelian successive quotients then we

show by induction that G(i) < Gn−i, so in particular G(n) = {e}. In fact, this is clear

for i = 0 and if it holds for i, then G(i+1) = [G(i), G(i)] < [Gn−i, Gn−i] < Gn−i−1, the

last inclusion being a consequence of the fact that Gn−i/Gn−i−1 is abelian. 2

Theorem 3. a) Any subgroup of a solvable group is solvable.

b) If G is solvable and H / G then G/H is solvable.

c) If H / G and both H, G/H are solvable then G is solvable.

Proof: a) This follows from the fact that if H < G then H (i) < G(i) for all i.

For b) note that under the projection G −→ G/H the group G(i) is mapped onto

(G/H)(n).

To show c) let G0 < ... < Gk = H and B0 < ... < Bl = G/H be a subnormal

series with abelian successive quotients of H and G/H respectively. By the corre-

spondence theorem we have Bi = Gk+i/H for some subgroup Gk+i of G. By the

third homomorphism theorem, the group Gi/Gi−1 is isomorphic to Bi/Bi−1, hence

it is abelian. Thus G0 < ... < Gk+l is a subnormal series of G with abelian successive

quotients. In particular, G is solvable. 2

Exercise. Show that a solvable group has a composition series iff it is finite. Show

that a finite group is solvable iff all its composition factors are cyclic of prime order.

Show that each chief factor of a finite solvable group is a product of several copies

of a cyclic group of prime order.

Besides derived series there are two other series associated to a group G. The

lower central series for G is defined inductively as follows: G[0] = G and G[i+1] =

[G,G[i]]. Directly from the definition we see that G[i] are normal in G and G[i−1]/G[i]

is contained in the center of G/G[i]. The upper central series for G is defined

inductively as follows: Z0 = {e} and Zi/Zi−1 is the center of G/Zi−1. It is easy to

see that the groups in the upper central series are normal in G.
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We say that a group G is nilpotent if it has a normals series G0 < ... < Gn

such that Gi+1/Gi is contained in the center of G/Gi for all i. Any such normal

series is called a central series of G. The successive quotients of a central series

are abelian so nilpotent groups are solvable, but the converse is false. For example,

S3 is solvable but not nilpotent.

It turns out that the following is true:

Theorem 4. The following conditions are equivalent:

(1) G is nilpotent;

(2) G[i] = {e} for some i.

(3) Zi = G for some i.

Moreover, if G is nilpotent then the smallest i such that G[i] = {e} coincides with

the smallest i such that Zi = G. This number is called the nilpotency class of G.

Proof: Let G0 < ... < Gm be a central series for G. Easy induction shows that

G[i] < Gm−i for all i and Gi < Zi for all i. In fact, the condition that Gi+1/Gi is

contained in the center of G/Gi is equivalent to [G,Gi+1] < Gi. Thus, if G[i] < Gm−i

then G[i+1] = [G,G[i]] < [G,Gm−i] < Gm−i−1. Also, if Gi < Zi then G/Zi is a

quotient of G/Gi. In particular, the image of Gi+1 in G/Zi is central, so Gi+1 < Zi+1

by the definition of Zi+1.

We see that if G is nilpotent that the smallest i such that G[i] = {e} is bounded

above by the length of any central series in G. Consequently, the lower central series

is a central series if G and the smallest i such that G[i] = {e} is in fact equal to the

length of the shortest possible central series for G.

The same is true for the smallest i such that Zi = G. Thus we see that (1) implies

both (2) and (3) and that our definition of nilpotence class is correct.

Conversely, both (2) and (3) imply (1) since the lower (upper) central series

becomes a central series of G. 2

Exercise. Prove that:

a) Any subgroup of a nilpotent group is nilpotent.

b) If G is nilpotent and H / G then G/H is nilpotent.
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Exercise. A subgroup H of a group G is called characteristic if f(H) = H for

every automorphism f of G. Prove that charcteristic subgroup is normal. Prove

that each memeber of a derived series, lower central series or upper central series is

characteristic.

Exercise. A group G is called supersolvable if it has a normal series with cyclic

successive quotients.

a) Prove that finite nilpotent groups are supersolvable.

b) Prove that a finite group is supersolvable if all chief factors of G have prime order.

Exercise. Show that the group UTn(F ) is nilpotent and find its nilpotence degree.


