Problem 22 to 6.1 in Dummit and Foote is incorrect as stated. Here is a counter-example.

Let \(A = \mathbb{Q} \oplus \mathbb{Q} \) and let \(H = SL_2(\mathbb{Q}) \). Then \(H \) acts naturally on \(A \) and we can form the semi-direct product \(G = A \rtimes H \). Note that \(A \triangleleft G \).

Claim 1. \(\Phi(A) = A \). Indeed, \(A \) has no maximal subgroups. To see this note that \(A \) is abelian so any maximal subgroup \(M \) of \(A \) is normal and \(A/M \) is an abelian simple group, i.e. a cyclic group of prime order \(p \). On the other hand, \(A \) is divisible, so for any \(a \in A \) there is \(b \in A \) such that \(pb = a \). It follows that \(a + M = (pb) + M = p(b + M) = 0 \). Thus \(A/M = \{0\} \), a contradiction.

Claim 2. \(H \) is a maximal subgroup of \(G \) (where \(H \) is identified with the set of elements of the form \((0, L), L \in H\)). In fact, if \(H < K \), then there is \((a, L) \in K \) with \(a \neq 0 \), \(a \in A \) and \(L \in H \). Thus \((a, I) = (a, L)(0, L^{-1})\) is also in \(K \). Since \(H \) acts transitively on non-zero elements from \(A \), given any \(b \in A \) there is \(L_1 \in H \) such that \(L_1(a) = b \). This means that in \(G \) we have \((b, I) = (0, L_1)(a, I)(0, L_1)^{-1} \in K \). This shows that \(A \) is contained in \(K \). Thus both \(A \) and \(H \) are contained in \(K \), i.e. \(K = G \).

Claim 2 tells us that \(\Phi(G) \) is contained in \(H \). Thus \(\Phi(G) \cap \Phi(A) = \{(0, I)\} \) is trivial. In particular, \(\Phi(A) \) is not contained in \(\Phi(G) \).

Exercise. What is \(\Phi(G) \)?

The conclusion of the problem is true if \(\Phi(N) \) is finitely generated. Indeed, suppose that \(\Phi(N) \) is generated by \(a_1, \ldots, a_k \). Note that each \(a_i \) is a non-generator for \(N \). It follows that if \(N = < a_1, \ldots, a_k, S > \) for some subset \(S \) then \(N = < S > \). In particular, if \(T \) is a subgroup of \(N \) such that \(N = T\Phi(N) \) then \(N = < T, a_1, \ldots, a_k > \), so \(T = N \).

Suppose \(H \) is a maximal subgroup of \(G \) which does not contain \(\Phi(N) \). Since \(\Phi(N) \) is characteristic in \(N \), it is normal in \(G \). Thus \(H\Phi(N) \) is a subgroup of \(G \) properly containing \(H \), so \(G = H\Phi(N) \). It follows that \(N = (H \cap N)\Phi(N) \), hence \(N = H \cap N \) and \(\Phi(N) \subseteq N \subseteq H \), a contradiction.