Recall from previous lectures:

Theorem 1: Let G be a nilpotent group of class k and $a \in G$. Then $[G, G] \cdot \langle a \rangle$ is a normal subgroup of G of class $\leq k-1$.

We used this result to prove the following (by induction on class):

Theorem 2: Let G be nilpotent. The set $T(G)$ of all torsion elements (i.e., of finite order) is a characteristic subgroup of G.

Exercise: Let $m \in \mathbb{N}$. Use the same technique to prove that the set of all $g \in G$ such that $g^m = e$ for some k is a subgroup.

Conclude that:

Corollary 1: G nilpotent then $T(G) = \bigoplus_p T_p(G)$, where $T_p(G)$ is the set of all elements of p-power order.

Last time we also proved that:

Theorem 3: G nilpotent, $d_4 \neq H \leq G \Rightarrow H \cap G \neq d_4$.

Corollary 2: G nilpotent, then

(a) G has element of order p iff $G_1(G)$ has element of order p (p a prime)

(b) G is torsion free $\iff G_1(G)$ is torsion free.

Proof: By Theorem 3, $T_p(G) \neq d_4 \iff T_p(G)/G_1(G) \neq d_4$. This proves (a).

Also, $T(G) \neq d_4 \iff T(G)/G_1(G) \neq d_4$, which proves (b).

Theorem 4: Any group. Then

(i) $G_1(G)$ has no elements of order p $\implies G_1(G)$ has no elements of order p (here p is a prime).

(ii) $G_1(G)$ has exponent m $\implies G_1(G)$ has exponent dividing m.

-1-
Proof: Recall that \(y_2(5) / y_1(5) = y_1(5) / y_2(5) \). In particular, if \(g \in G \) and \(a \in y_2(5) \), then \([a,b] \in y_1(5) \). It follows that for \(g \in y_2(5) \) we have \([a,b]^n = [a,g]^n [g,b]^n = [a,g][b,g] \) (as \([a,g] \in y_1(5) \)). It follows that \([a,y]^n = [a,g]^n \) for any \(a \in y_2(5), g \in G\).

Suppose \(y_1(5) \) has no elements of order \(p \) and consider \(a \in y_2(5) \) such that \(a^p \in y_2(5) \) (i.e., \(a^p \in y_1(5) \)). Then for any \(g \in G \) we have \(e = [a,y]^n = [a,g]^n \). Since \([a,g] \in y_1(5) \), we conclude that \([a,y]^n = e \). Since \(g \) was arbitrary, \(a \in y_2(5) \). This proves (1).

Suppose now \(n^m = e \) for all \(a \in y_2(5) \). Then for \(a \in y_2(5), g \in G \) we have \([a,y]^n = [a,g]^n = e \), so \(a^m \in y_1(5) \). This proves (2).

Corollary 3. Let \(G \) be nilpotent. Following conditions are equivalent:

1. \(G \) is torsion-free
2. \(y_1(5) \) is torsion-free
3. \(y_k(5) / y_{k+1}(5) \) is torsion-free for all \(k \).

Proof: That (1) \(\Rightarrow \) (2) follows from Corollary 2. Clearly (2) \(\Rightarrow \) (3) for \(k = 1 \). Now recall that \(y_k(5) / y_{k+1}(5) = \frac{y_1(5)}{y_k(5) / y_{k+1}(5)} \). Thus (3) \(\Rightarrow \) (2) follows from (2) of Theorem 4 and obvious induction.

(Note that a group is torsion-free if and only if every prime \(p \) does not have elements of order \(p \).)

Corollary 4: Let \(G \) be nilpotent of rank \(R \). If \(y_1(5) \) has exponent \(m \), then \(G \) has exponent dividing \(m^4 \).
Proof: As in the proof of Corollary 3, we see that \(g(6) \) has exponent \(m \) implies that \(g(6)^m \) has exponent dividing \(m \) for all \(k \). This means that \(g \in g(6) \) then \(g^m \in g(6) \). Starting with any \(g \in G = g(6) \) we see that
\[
g^m \in g(6) = \ker f.
\]

Another application of Theorem 1 is the following

Theorem 5: Let \(G \) be a torsion-free nilpotent group. If \(g, b \in G \) and \(a^m = b^m \) then \(a = b \).

Proof: We use induction on the class of \(G \). If \(G \) is abelian and torsion-free the result is clear: \(a^m = b^m \Rightarrow (a^{-1}b)^m = de \Rightarrow a^{-1}b = e \Rightarrow a = b \).

Suppose the result holds for groups of class \(< k \) and let \(G \) be of class \(k \), \(g, b \in G \) and \(a^m = b^m \). The group \([g, b] \) has class \(< k \) and \([b, b^{-1}] = (b b^{-1})^m \). Also,
\[
(b b^{-1})^m = b^m b^{-1} = b^m b^{-1} = b^m = a^m.
\]
By inductive assumption, \(b b^{-1} = a \), i.e. \(a \) and \(b \) commute. Thus \((a^{-1}b)^m = a^{-1}b = \ker f \) and therefore \(a^{-1}b = e \), i.e. \(a = b \).

We end by discussing some basic properties of finitely generated nilpotent groups. Recall that we proved that if \(G \) is finitely generated then \(G(6)^m \) is finitely generated for all \(k \). It follows that \(G = G(6)^2 \neq G(6)^2 \). - 2 \(G(6)^2 \) = \(\ker f \) is a central series with finitely generated abelian successive quotients. Since a refinement of a central series is central, we see

\[-3 - \]
that G has a central series with cyclic successive quotients. Since central series is normal we see that

Theorem 6: A finitely generated nilpotent group is supersolvable (hence also polycyclic). In particular, every subgroup of a finitely generated nilpotent group is finitely generated.

Theorem 7: A finitely generated torsion nilpotent group is finite.

Proof. Induction on class. If G is abelian, finitely generated and torsion, then G is finite. Suppose works for groups of class $< k$ and consider a finitely generated torsion nilpotent group of class k. Then G/G_k has class $< k-1$ and is finitely generated and torsion, so G/G_k is finite. Also G/G_k is finitely generated, abelian and torsion, hence finite. Since both G/G_k and G/G_k are finite, so is G.

Corollary 5: If G is finitely generated nilpotent then $T(G)$ is finite. Note that $G/T(G)$ is torsion-free. It is **false** in general that $T(G)$ is a direct factor of G. However, the following is true:

Theorem 8: A finitely generated nilpotent group has a torsion-free subgroup of finite index.

Proof. Induction on class of G. If G is abelian this follows from classification of finitely generated abelian groups. Suppose the result holds for groups of class $< k$ and let G be of class k.

Then $\Gamma_2(G)$, being of class $< k$, has a finite index subgroup M which is torsion-free. The intersection $\cap M$ of all subgroups of $\Gamma_2(G)$ of index $[G: H]$ is then a characteristic, torsion-free subgroup of $\Gamma_2(G)$ of finite index. Consider G/H. The commutator of G/H is $\Gamma_2(G/H)$, which is finite. It follows that the center of G/H has finite index and therefore G/H has a subgroup H' of finite index which is torsion-free. Then H' is of finite index in G and torsion-free. \Box

We end by listing without proof some deeper results.

Theorem A: Every finitely generated torsion-free nilpotent group can be embedded into $\text{UT}_n(\mathbb{Z})$ for some n.

Theorem B:
1. If G is supersolvable then $[G, G]$ is nilpotent.
2. Any polycyclic group G has a subgroup H of finite index such that H is torsion-free and $[H, H]$ is nilpotent.

Theorem C (Malcev): A soluble subgroup of $\text{GL}_n(\mathbb{Z})$ is polycyclic.

Theorem D (Auslander–Swan): Let G be a polycyclic group with a torsion-free normal nilpotent subgroup N such G/N is abelian and torsion-free. Then there is injective homomorphism $\phi: G \to \text{GL}_n(\mathbb{Z})$ of $\text{GL}_n(\mathbb{Z})$ (for some n).

In particular, every polycyclic group can be embedded into $\text{GL}_n(\mathbb{Z})$ for some n. Φ

THE END