
GROUP ACTIONS OR PERMUTATION REPRESENTATIONS

Recall our very general method of obtaining groups: take an object X of some

catogorey (a set with some extra structure) and consider the group AutX of all

automorphisms of X. Since this group reflects the symmetries of X, its properties

can be derived from geometric properties of X (so we reverse our point of view:

instead of studying X via AutX, we investigate AutX via X).

If G is an abstract group, it is often a very fruitful idea to investigate represen-

tations of G on objects of a suitable category. By a representation we mean here

simply a group homomorphism from G to AutX.

For example, we could take a vector space V and consider a representation of

G on V . Such representations, i.e. homomorphisms from G to GL(V ) are called

linear representations. They play a fundamental role in group theory and many

other parts of mathematics.

Another important example form representations of groups on groups, i.e. homo-

morphisms from G to AutH for some group H. We will meet such representations

when we discuss semidirect products.

Two representations fi : G −→ AutXi are called equivalent if there is an isomor-

phism α : X1 −→ X2 such that αf1(g) = f2(g)α for evry g ∈ G (note that α induces

a group homomorphism from AutX1 to AutX2 by u 7→ αuα−1). More generally,

we define a morphism between the representations f1 and f2 to be any morphism

α : X1 −→ X2 such that αf1(g) = f2(g)α for all g ∈ G

We say that a representation f is faithful if ker f is trivial, i.e. if f is an injection.

Our goal in this section is to study permutation representations, i.e. repre-

sentations on sets. Thus a permutation representation of G on a set X is simply a

group homomorphism from G to the group S(X) of all permutations of X.

There is another point of view on permutation representations, which is often very

convenient, via the notion of a group action.
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Definition 1. A (left) action of a group G on a set X is an operation ∗ which

to any element g ∈ G and any s ∈ X assigns an element g ∗ s of X and has the

following two properties:

(a) f ∗ (g ∗ s) = (fg) ∗ s for any f, g ∈ G and s ∈ S;

(b) e ∗ s = s for any s ∈ S, where e is the unit element of G.

Note that (a) and (b) mean that the action ∗ is compatible with the group struc-

ture of G. Note also that in a more precise language, an operation ∗ as above is

simply a function G×X −→ X which satisfies conditions (a) and (b).

We have to explain how we identify actions and permutation representations.

Suppose first that we have a homomorphism φ : G −→ S(X). So for g ∈ G

the element φ(g) is a bijection of X. We can now say that the action of g ∈ G on

s ∈ X results in φ(g)(s) ∈ X, i.e. we define g ∗ s = φ(g)(s). We need to check that

conditions (a) and (b) are satisfied, and this is a very simple consequence of the fact

that φ is a homomorphism:

(a) We have (fg) ∗ s = φ(fg)(s) = (φ(f)φ(g))(s) = φ(f)(φ(g)(s)) = φ(f)(g ∗ s) =

f ∗ (g ∗ s).

(b) e ∗ s=φ(e)(s) = id(s) = s for any s ∈ X.

Thus indeed we get an action from a homomorphism φ.

Conversely, suppose we have an action ∗ of G on X. We need to construct a

homomorphism φ : G −→ S(X) corresponding to this action. For this note that

each g ∈ G gives rise to a function Lg : X −→ X defined by Lg(s) = g ∗ s.

Note that LgLg−1(s) = Lg(g
−1 ∗ s) = g ∗ (g−1 ∗ s) = (gg−1) ∗ s = e ∗ s = s, so

LgLg−1 = id. Similarly, Lg−1Lg = id, which shows that Lg is a bijection of X

(since it has an inverse Lg−1). Thus we get a function φ : G −→ S(X) defined by

φ(g) = Lg. It remains to verify that φ is a homomorphism, which is a quite simple

task: φ(fg)(s) = Lfg(s) = (fg) ∗ s = f ∗ (g ∗ s) = Lf (Lg(s)) = φ(f)(φ(g)(s)) for

any s ∈ X so in fact φ(fg) = φ(f)φ(g).

The reader will easily verify that the constructions of the action from a permuta-

tion representation and the representation from an action are inverse to each other

and allow us to identify actions of G on X and homomorphisms from G to S(X).

There are two very important notions associated to any action.
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As a first we introduce the notion of an orbit of an element s ∈ X under the

action of G. In plane words, the orbit O(s) of s consists of all elements of X which

can be obtained by acting by some element of G on s, i.e. we have

Definition 2. The orbit O(s) of s under the action of G is the set O(s) = {g ∗ s :

g ∈ G}.

The main property of orbits is contained in the following

Lemma 1. If s, t ∈ S then either O(s) = O(t) or O(s) ∩O(t) = ∅.

Proof: First note that if v ∈ O(s) then v = f ∗ s for some f ∈ G. Thus, for any

g ∈ G we have g ∗ v = g ∗ (f ∗ s) = (gf)∗ s ∈ O(s). This shows that O(v) is a subset

of O(s). On the other hand, we have f−1 ∗ v = f−1 ∗ (f ∗ s) = (f−1f) ∗ s = e ∗ s = s,

so s = f−1 ∗ v ∈ O(v). As above, this implies that O(s) ⊆ O(v), so we have in fact

O(s) = O(v). In other words, the orbits of elements belonging to a given orbit are

all equal to each other.

Suppose now that the orbits of s and t are not disjoint, so there is v ∈ O(s)∩O(t).

Then we have O(s) = O(v) = O(t) by the above discussion. ✷

The lemma says that the orbits partition the set X into pairwise disjoint subsets.

The second notion we want to introduce is the notion of a stabilizer St(s) of any

s ∈ X. The definition is very simple:

Definition 3. The stabilizer of s ∈ X is the subset St(s) = {g ∈ G : g ∗ s = s} of

G.

In plain words, the stabilizer of s consists of all those elements of G which act

trivially on s (i.e. which fix s). Another very common notation for the stabilizer of

s is Gs. We will use both notations.

The main fact about stabilizer is that it is a subgroup of G.

Lemma 2. (1) For any s ∈ X, the stabilizer St(s) is a subgroup of G.

(2) St(g ∗ s) = gSt(s)g−1 for any g ∈ G and s ∈ X.

Proof: Clearly e ∈ St(s). If f, g ∈ St(s) then f ∗ s = s = g ∗ s so (fg) ∗ s =

f∗(g∗s) = f∗s = s, i.e. fg ∈ St(s). Also, g−1∗s = g−1∗(g∗s) = (g−1g)∗s = e∗s = s

so g−1 ∈ St(s). This proves (1).
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In order to establish (2) note that f ∈ St(g∗s) iff f ∗(g∗s) = g∗s iff (fg)∗s = g∗s

iff g−1 ∗ ((fg) ∗ s) = g−1 ∗ (g ∗ s) = s i.e. iff (g−1fg) ∗ s = s which is equivalent to

g−1fg ∈ St(s) i.e. f ∈ gSt(s)g−1. This proves (2). ✷

From now on we write gs instead of g ∗ s.

The following definition, extending the notion of a stabilizer, is very useful for

investigation of group actions:

Definition 4. Let a group G act on a set X and let Y be a subset of X. The

stabilizer of Y is the subset

St(Y ) = {g ∈ G : gy ∈ Y and g−1y ∈ Y for all y ∈ Y } = {g ∈ G : gY = Y }.

A pointwise stabilizer of Y is the subset GY = {g ∈ G : gy = y for all y ∈ Y }.

It is a straightforward exercise to verify that both St(Y ) and GY are in fact

subgroups of G. If Y = {y} consists of one element, we have GY = St(Y ) =

St(y) = Gy.

It is clear from the definition that St(Y ) acts on Y .

We say that Y is G−stable if St(Y ) = G. For example, any orbit is G−stable.

In fact we have the following simple

Exercise. A subset Y of X is G−stable iff it is a union of some of the orbits of G

on X.

Proposition 1. The number of elements in the orbit O(s) is equal to the index

[G : St(s)]. In particular, if G is finite, then |O(s)| = |G|/|St(s)| divides |G|.

Proof: Our proof will establish a bijection between left cosets of St(s) in G and

the elements of O(s). Given a left coset gSt(s) we assign to it the element gs in the

orbit of s. This is well defined: if gSt(s) = hSt(s) then g = ht for some t ∈ St(s)

and gs = (ht)s = h(ts) = hs, as ts = s. Thus we defined a function from left cosets

of St(s) to the orbit O(s) of s. This functions is surjective: any element in O(s) is

of the form gs for some g ∈ G hence it is assigned to the coset gSt(s). It is also

injective. Indeed, if the cosets gSt(s) and hSt(s) are mapped to the same element

in the orbit of s then gs = hs. This means that (h−1g)s = s, i.e h−1g ∈ St(s). It

follows that gSt(s) = hSt(s). ✷
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Remark. It follows that the number |St(t)| is the same for any element t ∈ O(s).

This however should not be surprising at all, since we proved in Lemma 2 that

the groups St(t) and St(s) are conjugate in G, so in particular they have the same

number of elements.

We need more definitions.

Definition 5. We say that the action of G on X is transitive, if there is only one

orbit of these action (which then equals X). In other words, the action is transitive

if for any two elements s, t in X there is g ∈ G such that gs = t.

Exercise. Let π : G −→ S(X) be a permutation representation such that the

corresponding action of G on X is transitive. Let x ∈ X. Prove that the kernel of

π is the largest normal subgroup contained in St(x).

Definition 6. An element s ∈ X is called a fixed point of the action of G on X

if the orbit of s equals to {s}. Equivalently, s is a fixed point iff St(s) = G, i.e. if

gs = s for every g ∈ G.

Fixed points should be thought of as elements having many symmetries, so they are

of special interest. The set of all fixed points is denoted by Fix(G). More generally,

if T ⊆ G is any subset, we define

Fix(T ) = {s ∈ X : ts = sfor all t ∈ T}.

It is easy to see that Fix(T ) = Fix(< T >).

We derive now three fundamental rules of counting associated to a group action

of a finite group G on a finite set S.

Rule 1. If the action of G on S is transitive, then |S| = |G|/|St(s)| for any s ∈ S.

This rule follows immediately from Proposition 2 and the fact that transitivity of

the action means that O(s) = S.

Rule 2. Let p be a prime number which does not divide |S|. There is an element

s ∈ S such that |O(s)| is not divisible by p.
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In fact, if the number of elements in every orbit is divisible by p then the number of

elements in S, which is the sum of the numbers of elements in orbits, is also divisible

by p. But we assumed that this is not the case, so the number of elements in at

least one orbit is not divisible by p.

Rule 3. Suppose that the order of the group G is a power of a prime number p and

that G acts on a set S. Let r denote the number of fixed points for this action. Then

p|(|S| − r). In particular,

(i) if |S| is not divisible by p then r > 0, i.e. there is at least one fixed point.

(ii) suppose p||S|. If r > 0 then r ≥ p, i.e. if there is a fixed point, the are at least

p of them.

In order to justify this rule recall that the number of elements in S is equal to the

sum of the numbers of elements in each orbit. Note that by Proposition 2, the

number of elements in each orbit divides |G|. Since |G| is a power of the prime p,

the number of elements in each orbit is a power of p as well. We have r orbits which

consist of 1 (= p0) element each and in all other orbits the number of elements is a

multiple of p (being a positive power of p). So the sum of the numbers of elements

in the orbits (which is |S|) equals r+(a multiple of p). Consequently, p|(|S| − r). If

|S| is not divisible by p then we immediately get that r 6= 0, which justifies (i). If

p||S| then also p|r = |S|− (|S|− r). In particular, if r 6= 0 then r is at least p, which

proves (ii).

Examples and application.

It is time to show that the ideas developed so far can be used in a very fruitful

way.

Example 1. Suppose that G acts on a set S. Let H be s subgroup of G. We can

restrict our attention to elements of H and we get in this way an action of H on S

called the restriction of the action of G to H. Such restriction can be quite useful.

For example, G need not be a p−group so we can not apply our Rule 3, but after

restricting to a subgroup which is a p−group we can try to apply this rule.

Example 2. Suppose that G acts on S and that T is a G − stable subset of S.

Then G acts on the set T . For example, if s ∈ S then the orbit O(s) is G−stable.
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Indeed, if t ∈ O(s) then t = fs for some f ∈ G and then gt = g(fs) = (gf)s ∈ O(s)

for any g ∈ G.

Example 3. Let H be a subgroup of G and let X be the set of all left cosets of

H in G. We define an action of g ∈ G on a coset aH by g ∗ aH = (ga)H. We

leave it as an exercise to check that this is indeed an action and that it is transitive.

Note that Rule 1 for this action is nothing but Lagrange’s theorem (observe that

H = St(eH)). We call this action the representation of G on the left cosets

of H by left multiplication.

It turns out that every transitive action is of this sort. More precisely, we have

the following:

Exercise. Suppose that G acts transitively on X. Let x ∈ X and set H = St(x).

Prove the representation of G on X and the representation on the left cosets of H

are equivalent.

Remark. The moral of this exercise is that every action is built up from transitive

actions (orbits) and transitive actions are determined by the subgroup structure of

G.

In the special case when H = {e}, we can identify left cosets of H in G with

elements of G (the coset {g} = gH is identified with g). Thus we get an action of

G on G which is usually called the action of G on itself by left translations.

This action has associated permutation representation G −→ S(G), which is easily

seen injective. Thus we established the following fundamental result

Cayley’s Theorem. Every group is isomorphic to a subgroup of S(X) for some

set X. If G is finite then X can be chosen finite too.

The representations of G on the left cosets of subgroups can be helpful in an in-

vestigation of G. For example, if H has index n then the permutation representation

on left cosets of H is a homomorphism to a group of order n!. Thus the kernel of

this representation has index at most n!, and it is a normal subgroup of G. This

answers one of the questions in Homework 1.

Note the following important corollary:
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Proposition 2. If G is finite, p is a prime divisor of |G| and H is a subgroup of G

of index n < p, then G is not simple.

Example 4 Suppose that G acts on S. Then G acts on the set P (S) of all subsets

of S as follows: if U ∈ P (S) then gU = {gs : s ∈ U}. A straightforward verification

that this is indeed an action is left as an exercise.

Fix an integer k ≤ |S| and denote by Pk(S) the set of all k−element subsets of

S. It is clear that it is a G−invariant subset of P (S). Explicitly, if U ∈ pk(S) then

U = {s1, ..., sk} and gU = {gs1, ..., gsk}.

Example 4 allows to construct many interesting actions. As an illustration, let

S = {1, 2, ..., n} and G = Sn, so G naturally acts on S. Let k ≤ n. Then we have

an action of G on Pk(S). We claim that this action is transitive. In fact, given k

elements s1, ..., sk of S there is a permutation f which maps i to si for all i ≤ k,

i.e. f ∗ i = si. Thus f ∗ {1, 2, ..., k} = {s1, ..., sk}. This shows that the orbit of

V = {1, 2, ..., k} is the whole Pk(S), i.e. the action is transitive.

What is the stabilizer of V ? Note that a permutation f is in St(V ) iff it maps

the set V onto itself and then it also maps the set S − V onto itself. So elements

of St(V ) can be thought of as pairs consisting of a bijection of V and a bijection

of S − V . But there are k! bijections of V and (n − k)! bijections of S − V , so we

have k!(n − k)! possibilities for f ∈ St(V ), i.e. |St(V )| = k!(n − k)! (an exercise:

show that St(V ) is isomorphic to Sk ×Sn−k). By Rule 1, we conclude that |S(k)| =

|G|/|St(V )| = n!/k!(n− k)!. In other words, the number of k−element subsets of a

set with n elements is n!/k!(n− k)!. The number n!/k!(n− k)! is often denoted by
(

n

k

)

and called the Newton symbol or Newton binomial coefficient.

Suppose now that n = psm for some prime p. Let f = (1, 2, 3, ..., ps)(ps +

1, ..., 2ps)...((m − 1)ps + 1, ...,mps) be a permutation of S written as a product

of disjoint cycles. All these cycles have length ps, so f has order ps. Let H be the

cyclic subgroup of G generated by f . Thus H is a p−group of order ps. Consider

the restriction of the action of G on Pps(S) to H. Suppose that U is a fixed point

for this action. Let a ∈ U . Note that we may write a = lps + b for some 0 ≤ l < m

and 0 < b ≤ ps and then the orbit of a under H is {lps + 1, ..., (l + 1)ps}. Since

V is H−stable, this orbit is contained in V so it equals V (they have the same
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number of elements). We see that the fixed points of the action of H are the sets

{1, 2, 3, ..., ps}, {ps+1, ..., 2ps}, ..., {(m−1)ps+1, ...,mps}. In particular, the number

of fixed points of the action of H on Pps(S) is m. By Rule 3, we have p|
(

n

ps

)

−m.

We can summarize the above considerations in the following

Theorem 1. The number of k−element subsets of an n−element set equals
(

n

k

)

=

n!/k!(n− k)!. If n = psm, where p is a prime then p|
(

n

ps

)

−m.

We will use this theorem in the next example to derive one of the most important

theorems about finite groups.

Example 5 Let G be a finite group and p a prime divisor of |G|. Thus we may

write |G| = psm for some integers m not divisible by p and s > 0. Let S be the set

of all subsets of G of order ps, i.e. S = Pps(G). The group G acts on itself by left

multiplication (see Example 3) so it acts on S according to Example 4. Explicitly,

if A = {a1, ..., aps} is an element of S (i.e. a subset of G of order ps) and g ∈ G

then we have g ∗A = {ga1, ..., gaps}. By Theorem 1, S has
(

psm

ps

)

elements p||S|−m.

Since (m, p) = 1, we see that |S| is not divisible by p. By Rule 2, there exists an

element T ∈ S whose orbit O(T ) has cardinality not divisible by p. Recall that

|O(T )| = |G|/|St(T )|. It follows that the stabilizer St(T ) has order divisible by ps.

On the other hand, for any A the stabilizer of A has at most ps elements. In fact,

let a ∈ A. If g ∈ St(A) then ga ∈ A so we have at most ps possibilities for ga and

each choice uniquely determines g (if ga = b then g = ba−1). Thus the number of

elements in St(T ) is both divisible by ps and not larger than ps, i.e. |St(T )| = ps.

Thus we found a subgroup St(T ) of G which has ps elements. The existence of such

subgroup is a very important theorem:

Theorem 2. (Sylow) If G is a finite group such that |G| = psm, where p is a prime

and (p,m) = 1 then G has a subgroup of order ps.

Subgroups whose existence we just established are very important in group theory

and we introduce the following definition

Definition 7. Let G be a finite group such that |G| = psm where p is a prime and

(p,m) = 1. Any subgroup of G of order ps is called a Sylow p−subgroup of G
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As a corollary of Theorem 2 we get the following result due to Cauchy:

Theorem 3. (Cauchy) Let G be a finite group and p a prime divisor of |G|. Then

G has an element of order p.

Proof: Let P be a Sylow p−subgroup of G, so |P | = ps for some s > 0. Let a ∈ P ,

a 6= e. The order of a divides ps, so it equals pk for some 0 < k ≤ s. Now ap
k−1

has

order p. ✷

Exercise. Let G be a finite group and p a prime number such that p||G|. Consider

the set S of all p−tuples (a1, ..., ap) of elements from G such that a1a2...ap = e, i.e.

S = {(a1, ..., ap) : ai ∈ G for all i, and a1...ap = e}

Let C be a cyclic group of order p and f a generator for C. We define an action

of C on S as follows: if s ∈ C then s = f i for a unique 0 ≤ i < p and we set

s ∗ (a1, ..., ap) = (ai+1, ai+1, ...ap, a1, a2, ..., ai).

a) Check that this is indeed an action of C on S.

b) Show that the number of elements in S equals |G|p−1.

c) Show that each fixed point for this action is of the form (g, ..., g) for some g ∈ G

such that gp = e.

d) Conclude that G has a nontrivial element of order p (so we get a different proof

of Cuchy’s theorem).

The next example will establish very important information about Sylow sub-

groups.

Example 6. We have seen that a group G acts on itself by left translations. But

there is another very important action of G on itself, the action by conjugation.

It is defined by g ∗ a = gag−1 for any a, g ∈ G. The verification that this is indeed

an action is straightforward and is left as an exercise. Note that the homomorphism

G −→ S(G) associated to this action has its image in the subgroup AutG of S(G).

If T is a subset of G then the pointwise stabilizer GT of T (under the conjugation

action) is called the centralizer of T and it is denoted by CG(T ). The stabilizer

St(T ) is called the normalizer of T and it is denoted by NG(T ).
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Let us now look at the induced action of G on P (G). Since a conjugation is an

automorphism of G, this action takes subgroups of G to subgroups. Thus it induces

an action of G on the set of all subgroups of G of any given order. In particular, we

get an action of G on the set Sylp of all Sylow p−subgroups of G (here p is a fixed

prime divisor of |G|). We are going to analyze this action more closely. Note first

that Sylp is not empty by Theorem 2.

Let P ∈ Sylp. Consider the orbit O(P ) of P under the action of G. We claim

that P ⊆ St(P ) and P is a normal subgroup of St(P ). In fact, since P is a group,

we have pPp−1 = P i.e. p ∈ St(P ) for any p ∈ P . Also, for n ∈ St(P ) we

have nPn−1 = P so P is indeed normal in St(P ). It follows that |P |||St(P )| and

consequently |G|/|St(P )| = |O(P )| is not divisible by p.

Let Q be some p−subgroup of G. We can restrict the action of G on O(P ) to the

action of Q. Since Q is a p−group and |O(P )| is not divisible by p, we see by Rule

3 that the action of Q on O(P ) has a fixed point. Call it R. Thus Q is a subgroup

of St(R). But this forces Q ⊆ R. In fact, we have seen that R is normal in St(R).

Consider the natural homomorphism f : St(R) −→ St(R)/R. Let a ∈ Q, so the

order of a is a power of p. Since the order of f(a) divides the order of a, it is also a

power of p. But p does not divide |St(R)/R|, so the only possibility is that f(a) has

order 1, i.e. f(a) = e. But this means that a ∈ kerf = R. This shows that Q ⊆ R.

In particular, every p−subgroup of G is contained in a Sylow p−subgroup.

Suppose now that we take for Q a Sylow p−subgroup of G. Then for any fixed

point R of Q on O(P ) we have Q ⊆ R. But Q and R have the same number of

elements, so Q = R. This shows that Q ∈ O(P ) and that Q is the unique fixed

point of the action of Q on O(P ). Since Q was arbitrary, we see that all Sylow

p−subgroups belong to O(P ). In other words, O(P ) = Sylp, i.e. G acts transitively

on Sylp. In particular, |Sylp|||G|. Since Q is the unique fixed point of the action of

Q on Sylp, Rule 3 shows that p||Sylp| − 1.

We can summarize our investigation in the following fundamental theorem, called

Sylow Theorem:

Theorem 4. (Sylow Theorem) Let G be a finite group and p a prime divisor of

|G|. Then:
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— G has at least one Sylow p−subgroup

— any two Sylow p−subgroups are conjugate in G

— the number tp of Sylow p−subgroups divides |G| and p|(tp − 1)

— every p−subgroup of G is contained in a Sylow p−subgroup


