Homework 1

due on Wednesday, February 7
Read carefully Chapter 1 of Miln's book and sections 1.1-1.6, 2.1, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3 of Dummit and Foote.

Problem 1. Let G be a group. Recall that (m, n) is the greatest common divisor of m and n. Prove that:
a) If $a \in G$ has finite order n then, for any integer k, the order of a^{k} is $n /(n, k)$.
b) If a has order m, b has order n, and $a b=b a$ then the order of $a b$ divides $m n /(m, n)$ and is divisible by $m n /(m, n)^{2}$.
c) If G has an element a of order m and an element b of order n such that $a b=b a$ then G has an element of order $[m, n]([m, n]$ is the least common multiple of m and $n)$.
d) If G is a finite abelian group and N is the smallest positive integer such that $g^{N}=e$ for all $g \in G$, then G has an element of order N.

Remark. In general, the N defined in d) makes sense for any group (it can be infinite) and it is called the exponent of G.
e) If $f: G \longrightarrow H$ is a homomorphism and $a \in G$ has finite order n, then $f(a)$ has also finite order k which divides n. Also, a^{m} is in the kernel of f iff k divides m.
f) Let G be a cyclic group of order n and H a cyclic group of order m (we allow the orders to be infinite). Show that the set of all homomorphism from G to H is a group with operation + defined by $(f+g)(a)=f(a) g(a)$ (this is true for arbitrary G and abelian H). Describe this group for each pair m, n.
g) Study Theorem 1.64 and its proof in Miln's book.

Problem2. Let G be a group and H its subgroup.
a) Show that if $a_{i} H, i \in I$ are all the left cosets of H in G then $H a_{i}^{-1}, i \in I$ are all the right cosets of H in G (each listed once). Conclude that the number of left cosets of H is finite iff the number of right cosets is finite and these numbers coincide. The number of left (right) cosets of H in G is called the index of H in G and it is usually denoted by $[G: H]$.
b) Prove that if $K<H<G$ then $[G: K]=[G: H][H: K]$.
c) Show that for any subgroup K of G we have $[K: H \cap K] \leq[G: H]$.
d) Prove that if H, K are subgroups of G of finite index then so is $H \cap K$ and $[G: H \cap K] \leq$ $[G: H][G: K]$.
e) Prove that if H is of finite index then G is finitely generated iff H is finitely generated.
f) Prove that if H is of finite index then there is a normal subgroup of G of finite index contained in H (show that the number of conjugates of H is finite and take their intersection).
g) Show that if G is finitely generated then it has only finitely many subgroups of a given finite index n (use the fact that the action of G on cosets of a subgroup K of index n defines a homomorphism of G into S_{n} whose kernel is contained in K).
h) If $[G: H]=2$ then H is normal.
i) Show that if $[G: H]=n$ then $g^{n!} \in H$ for all $g \in G$. If H is normal then n ! can be replaced by n. Show that without normality this is no longer true.

Problem 3. Let G be the set of all bijections $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ which preserve distance, i.e. such that $|f(i)-f(j)|=|i-j|$ for all integers i, j.
a) Show that G is a subgroup of $\operatorname{Sym}(\mathbb{Z})$. It is called the infinite dihedral group and it is often denoted by D_{∞}.
b) The group G contains elements T, S such that $T(a)=a+1$ and $S(a)=-a$ for all integers a. Prove that $S * T=T^{-1} * S$. Show that the subgroup $<T>$ is infinite. What is $<S>$?
c) Show that if $F \in G$ and $F(0)=0$ then either $F=1$ (the identity) or $F=S$.
d) Show that every element of G is of the fo T^{i} or $S T^{i}$ for some integer i (try to use similar argument to the one we used for dihedral group of order n).
e) Suppose that $T^{5} S^{7} T^{3}=S^{a} T^{b}$. Find a and b.
f) Find the center and the derived subgroup of G.

Problem 4. a) Describe all subgroups and normal subgroups of D_{n}.
b) Describe the center and the derived group of D_{n}.
c) For which m, n is there a surjective homomorphism from D_{m} to D_{n} ? (Optional: Describe all homomorphisms from D_{m} to D_{n}.)
d) Prove that if x, y are two elements of order 2 in a group G and $x y \neq y x$ then the subgroup $<x, y>$ of G is isomorphic to a dihedral group (finite or infinite).

Problem 5. In the group $G L_{2}(\mathbb{C})$ of all invertible 2×2 matrices with entries in complex numbers consider the matrices $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), i=\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & -\sqrt{-1}\end{array}\right), j=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), k=i j=\left(\begin{array}{cc}0 & \sqrt{-1} \\ \sqrt{-1} & 0\end{array}\right)$. Let Q_{8} be the set $\{I,-I, i,-i, j,-j, k,-k\}$.
a) Show that Q_{8} is a subgroup of $G L_{2}(\mathbb{C})$. Write the table of multiplication in $Q_{8} . Q_{8}$ is called the quaternion group.
b) List all subgroups of Q_{8}.

Furthermore, solve problems 18,23 to 1.6 , problem 6 to 2.1 , problem 26 to 2.3 from Dummit and Foote.

