Homework 4

due on Friday, April 12

Solve problem 18 to section $4.4,46$ to $4.5,10,21$ to 5.5 , and $21,24,26$ to 6.1.
Solve the following problems.
Problem 1. Let p be the smallest prime divisor of the order of a finite group G. Prove that if $H<G$ and $[G: H]=p$ then H is normal in G.

Problem 2. Let P be a Sylow p-subgroup of G and let $H<G$. Consider the natural action of H on the left cosets of P in $G(h(a P)=(h a) P)$. Show that the stabilizer of some left coset is a Sylow p-subgroup of H. (This result can be used to give a different proof of existence of Sylow p-subgroups).

Problem 3. Prove that there are no simple groups of order 2025.
Problem 4. a) Prove that S_{n} is generated by $(1,2)$ and $(1,2, \ldots, n)$.
b) Show that S_{n} is generated by $(1,2),(2,3), \ldots,(n-1, n)$.
c) Show that if p is prime then S_{p} is generated by any set $\{a, b\}$, where a is a transposition and b has order p.
d) Let $d \mid n$ and $1<d<n$. Show that S_{n} is NOT generated by $(1,2, \ldots, n)$ and $(1, d+1)$

Problem 5. a) Prove that if P is a Sylow p-subgroup of G and N is normal in G then $N \cap P$ is a Sylow p-subgroup of N.
b) If $f: G \longrightarrow H$ is a surjective homomorphism and P is a Sylow p-subgroup of G then $f(P)$ is a Sylow p-subgroup of H.

Problem 6. Let P be a Sylow p-subgroup of G and M a subgroup of G which contains the normalizer $N_{G}(P)$. Prove that $N_{G}(M)=M$. Consider the conjugation action of P on the set of all subgroups conjugate in G to M. Show that M is the only fixed point. Conclude that $[G: M] \equiv 1(\bmod p)$.

