
APPLICATIONS OF SYLOW THEOREM

We are going to discuss now how Sylow theorem can be used to investigate finite

groups, in particular to show that a particular finite group is not simple/is solvable/is

abelian. Let G be a group, p a prime and |G| = pam with (m, p) = 1. The following

techniques are very useful in proving that G is not simple:

• we know that the number tp of Sylow p−subgroups of G divides m and

p|(tp−1). Inspect the divisors of m to show that tp = 1 is the only possibility.

• if the above does not work, perhaps you can conclude that either tp = 1 or tp

is quite large. Assuming the latter case, count the number of p−elements

(i.e. elements of p−power order) to show that you get too many, or that it

forces that tq = 1 for some other prime q||G|.

• try several different primes and show that counting for all of them at once

leads to a contradiction (too many elements) unless tq = 1 for some q.

• try to find a subgroup of G of relatively small index and study the corre-

sponding permutation representation on left cosets. Show that the kernel of

this representation is not trivial, so it provides a normal subgroup.

• combine all the above methods and apply them not only to G but to some

subgroups of G (like centralizers or normalizers of some p−subgroups,...).

The best way to get a better understanding of the above ideas is to work out

several examples.

Groups of order pq We are now going to discuss groups G of order pq, where p

and q are primes.

Exercise. a) Prove that a group of order p2 is abelian (use the fact that it has a

nontrivial center).

b) Prove that group of order p2 is either cyclic or isomorphic to a direct product of

two cyclic groups of order p.
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We assume now that p < q. Let us first analyze the number tq of Sylow q−subgroups.

We have tq|p so tq ≤ p. But also q|(tq−1) so either tq = 1 or tq > q. Since q > p, we

see that the only possibility is that tq = 1. Thus G has a normal Sylow q−subgroup

Cq. Since its order is q, it is cyclic and contains all elements of G of order q. Choose

a generator a for Cq.

The group G has a subgroup Cp of order p. It is cyclic. Note that Cp ∩Cq = {1},

since p 6= q. Also, CqCp = G (just count the elements). It follows that G is a

semidirect product Cq ⋊φ Cp for some homomorphism φ : Cp −→ AutCq.

Recall now that AutCq is isomorphic to the multiplicative group of the field Fq

of order q. In fact, for f ∈ AutCq we have f(a) = ai for some i prime to q and the

map which assigns to f the residue of i modulo q is an isomorphism from AutCq

onto F×

q . In particular, the order of AutCq equals q−1. Recall now that F×

q is cyclic

(existence of primitive roots).

Since the order of AutCq equals q − 1, φ has to be trivial unless p|(q − 1). Thus,

if p ∤ (q− 1) then G is the direct product of Cp and Cq, hence it is cyclic of order pq

(this also follows from Sylow theorem).

Suppose now that p|(q− 1) and φ is not trivial. Then φ is injective. Since AutCq

is cyclic, it has unique subgroup < f > of order p, which then coincides with the

image of φ. Thus there is b ∈ Cp such that φ(b) = f . Clearly Cp =< b >. So we see

that G is uniquely defined by the requirement that φ is not trivial. It is not hard to

see that G has a presentation < a, b|aq = 1 = bp, bab−1 = ai >, where i is such that

f(a) = ai.

We proved the following

Theorem 1. Let G be a group of order pq where p < q are primes. If p ∤ (q − 1)

then G is cyclic. If p|(q − 1) then either G is cyclic or G is non abelian given by

a presentation < a, b|aq = 1 = bp, bab−1 = ai >, where i is any integer such that

q|ip − 1 and i − 1 is not divisible by q (different choices of i produce isomorphic

groups). In any case, G has a normal subgroup of order q.

Groups of order 144

We are now going to show that there is no simple group of order 144. Several

important techniques will be described in the course of the proof.
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Suppose to the contrary that G is a simple group of order 144 = 2432.

(1) We claim that G has no proper subgroups of index smaller than 6. In fact,

if k = [G : H] ≤ 5 then the permutation representation on the left cosets of

H is a nontrivial homomorphism π : G −→ Sk. Since 144 > 120 = 5! ≥ k!,

π can not be injective, so ker π is a nontrivial proper normal subgroup, a

contradiction.

(2) Consider the set Syl3 of Sylow 3−subgroups of G. Its cardinality t3 divides

16 and is congruent to 1 modulo 3. Thus t3 ∈ {1, 4, 16}. We can not have

t3 = 1, since this would mean that G has a normal Sylow 3−subgroup. Recall

the following important fact:

the number tp of Sylow p−subgroups of G equals [G : NG(P )], where

P is any Sylow p−subgroup of G.

Thus t3 = [G : NG(P )] ≥ 6 by (1). We see that t3 = 16 is the only possibility.

(3) Suppose that P, P ′ are different Sylow 3−subgroups. They have order 9,

hence are abelian. We claim that P ∩ P ′ = {1}. Suppose not. Then Q =

P ∩ P ′ has order 3. The normalizer NG(Q) is a proper subgroup of G and

it contains both P and P ′. In particular, the order of NG(Q) is divisible

by 9 and larger than 9, i.e it is 2u · 9 for some 1 ≤ u ≤ 3. It follows that

1 < [G : NG(Q)] = 24−u ≤ 8. By (1), we have [G : NG(Q)] = 8 and

consequently |NG(Q)| = 18. But then both P, P ′ are of index 2 in NG(Q),

so they are normal. We see that both P, P ′ are normal Sylow 3−subgroups

of NG(Q), so P = P ′, a contradiction.

(4) Thus any two distinct Sylow 3−subgroups of G have trivial intersection.

The total number of nontrivial elements in these groups (i.e. the number

of nontrivial 3−elements in G) equals t3(9 − 1) = 128 by (2). There are 16

elements left. Since G has a subgroup of order 16, these element form the

unique subgroup of order 16 in G, i.e. t2 = 1. Thus G has a normal Sylow

2−subgroup, a contradiction.

Simple groups of order 60

The goal now is to prove that if G is a simple group of order 60 then G ∼= A5.

Let G be simple, |G| = 60 = 22 · 3 · 5.
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(1) We claim that if G has a proper subgroup of index ≤ 5, then G ∼= A5. In

fact, suppose [G : H] = k ≤ 5. Consider the permutation representation

of G on left cosets of H. It is a nontrivial homomorphism π : G −→ Sk.

Since G is simple, π is injective. Thus 60|k!, so k = 5 (since k ≤ 5). Thus

π(G) is a subgroup of index 2 in S5, hence normal. We have seen that

the only nontrivial proper normal subgroup of S5 is A5 so π establishes an

isomorphism between G and A5.

(2) It remains to show that G has a subgroup of index ≤ 5. Suppose not.

Consider the set Syl2(G). Let P ∈ Syl2. Thus t2 = [G : NG(P )] ≥ 6. But t2

divides 15, so t2 = 15 is the only possibility.

(3) Let P, P ′ be different Sylow 2−subgroups. They have order 4, hence are

abelian. We claim that P ∩ P ′ = {1}. Suppose not, then Q = P ∩ Q′ has

order 2 and the normalizer NG(Q) is a proper subgroup of G and it contains

both P and P ′. In particular, the order of NG(Q) is divisible by 4 and larger

than 4. It follows that [G : NG(Q)] is a proper divisor of 15, hence does not

exceed 5. This contradicts (2).

(4) We see that any two distinct Sylow 2−subgroups of G have trivial inter-

section. We count now the number of nontrivial 2−elements. It equals

t2(4 − 1) = 45 by (2). We also count nontrivial 5−elements. Note that

t5 > 1 and 5|(t5 − 1), so t5 ≥ 6. Since Sylow 5−subgroups of G have order

5, distinct Sylow 5−subgroups have trivial intersection. Thus the number of

nontrivial 5−elements is t5(5 − 1) = 4t5 ≥ 24. This implies that G gas at

least 45 + 24 = 69 elements, a contradiction.

Groups of order 9555

We discuss one more example and prove that groups of order 9555 are not simple.

Suppose that G is a simple group of order 9555 = 3 · 5 · 72 · 13.

(1) We claim that G has no subgroups of index ≤ 12. In fact, if [G : H] = k ≤ 12,

then the permutation representation π : G −→ Sk on the left cosets of H

cannot be injective, since 13 ∤ k!.
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(2) Let Q ∈ Syl13(G) and H = NG(Q). Thus t13 = [G : H] ≥ 13. Since

1 < t13|3 · 5 · 7
2 and 13|(t13 − 1), it is easy to see that t13 = 3 · 5 · 7 is the only

possibility. Thus |H| = 7 · 13. In particular, H is cyclic.

(3) Let B be the Sylow 7−subgroup of H. Thus B is central in H. By Sylow’s

theorem, B is contained in a Sylow 7−subgroup D of G. Since |D| = 72, D is

abelian so D centralizes B. Thus CG(B) contains both H and D, so its order

is at least 72 · 13. By (1), the order of CG(B) is exactly 72 · 13 (otherwise its

index in G would be too small).

(4) Note that Q is a Sylow 13−subgroup of CG(B). The number of Sylow

13−subgroups of CG(B) divides 72 and is congruent to 1 mod 13, so it equals

1. In other words, CG(B) has unique Sylow 13−subgroup, namely Q. Thus

Q is normal in CG(B), i.e. CG(B) < NG(Q). This however contradicts (2),

where we showed that |NG(Q)| = 7 · 13.

Simple groups of prder p2qr.

Let G be a finite simple group of order p2qr, where p, q, r are distinct prime numbers.

We will prove that G is isomorphic to A5.

Since G is simple, the action of G on the left cosets of any proper subgroup H has

trivial kernel. This implies that p2qr divides [G : H]!, hence

(1) If H < G then [G : H] ≥ max{2p, q, r}.

Since the number of Sylow subgroups is equal to the index of the normalizer of a

Sylow subgroup, we get

(2) Let tp = |Sylp(G)|, tq = |Sylq(G)|, tr = |Sylr(G)|. By (1), each of these

numbers is greater or equal than max{2p, q, r}.

Recall that tp|qr, p|tp − 1, tq|p
2r, q|tq − 1, tr|p

2q, r|tr − 1.

(3) If r is the largest among p, q, r then tr = pq and p|r − 1.

In order to prove (3) note that tr|p
2q and tr > r (as r|tr − 1). It follows that

tr ∈ {p2, pq, p2q}.
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If tr = p2 then r|p2 − 1 = (p − 1)(p + 1), so r|p − 1 or r|p + 1. As r > p,

we must have r = p + 1. This means that p = 2 and r = 3. However this

contradicts the assumption that r > q.

Suppose now that tr = p2q. Then G has p2q(r − 1) elements of order r (as

any two different Sylow r-subgroups have trivial interesction). Furthermore,

G has at least p2+1 non-trivial elements of order a power of p (as tp > 1) and

it has tq(q−1) elements of order q. Thus p2qr > p2q(r−1)+p2+tq(q−1), i.e.

p2 > tq. Since tq|p
2r and p < r ≤ tq < p2 < pr, we must have tq = r. This

means that the normalizer M of a Sylow q-subgroup has order p2q. Since we

have p2qr − p2q elements of order r, the remaining elements constitute M .

Thus M is a normal subgroup of G, a contradiction.

Thus tr = pq is the only option left. Consider a Sylow r-subgroup S of G

and let N be its normalizer in G. Thus |N | = pr. Suppose that N is abelian

and Q is its Sylow p-subgroup. Then Q has order p and it is contained in a

Sylow p-subgroup P of G. Both S and P centralize Q, so the centralizer of

Q in G has order p2r and index q, which contradicts (1) (as q < r). Thus N

is not abelian, which can only happen if p|r − 1.

(4) Any two distinct Sylow p-subgroups of G have a trivial intersection.

Indeed, suppose two distinct Sylow p-subgroups P1, P2 of G have a non-trivial

intersection Q = P1 ∩ P2. Then Q is centralized by P1 and P2 (as Pi have

order p2, hence are abelian). Thus the centralizer CG(Q) has order divisible

by p2 and bigger than p2. It follows that the order of CG(Q) is either p2q or

p2r. Without loss of generality, we may assume that |CG(Q)| = p2q. Then r,

being the index of a proper subgroup CG(Q), is the largest of p, q, r by (1).

By (3), we have tr = pq and p|r−1. Note that CG(Q) has two different Sylow

p-subgroups P1 and P2, hence it has exactly q Sylow p-subgroups. It follows

that p|q − 1. Let T be a Sylow q-subgroup of CG(Q). Since Q is central in

CG(Q), the normalizer of T in CG(Q) contains both T and Q and therefore

it has either pq or p2q elements. In the former case, CG(Q) has exactly p

Sylow q-subgroups and q|p − 1, contradicting the divisibility p|q − 1. Thus
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T is normal in CG(Q). Then CG(Q) must be the normalizer of T in G and

tq = r. It follows that q|r − 1. We know from (3) that p|r − 1, so pq|r − 1

and r > pq. On the other hand pq = tr > r, a contradiction.

(5) tp 6= qr.

Indeed, suppose that tp = qr, then by (4) the group G has qr(p2 − 1) non-

trivial elements of p-power order. We also have tq(q − 1) elements of order q

and tq ≥ r. Similarly, we have tr(r− 1) elements of order r and tr ≥ q. Thus

p2qr ≥ 1+qr(p2−1)+r(q−1)+q(r−1) = p2qr+qr−q−r+1 = p2qr+(q−1)(r−1),

a contradiction.

From (5) we see that tp = q or tp = r. Without loss of generality we may assume

that tp = r. Then r is the largest among p, q, r by (2). Applying (3) we have

(6) tp = r, tr = pq, p|r − 1, r > q.

(7) tq = pr and p|q − 1.

Indeed, tq|p
2r and tq ≥ r > p. Thus tq ∈ {r, p2, pr, p2r}. We consider now

each possibility.

If tq = r then q|r− 1. Since p|r− 1 by (6), we get pq|r− 1, so r > pq = tr, a

contradiction.

Suppose that tq = p2. Let T be a Sylow q subgroup of G and N its normalizer

in G. Then |N | = qr. Since r > q, N has a normal Sylow r-subgroup R.

This hower implies that N normalizes R. Since tr = pq, the normalizer of R

in G has order pr and contains N , a contradiction.

Suppose now that tq = p2r. Then G has p2r(q − 1) elements of order q. By

(4) and (6), G has r(p2 − 1) non-trivial elements of order a power of p and it

has pq(r − 1) elements of order r. Thus

p2qr ≥ 1+p2r(q−1)+r(p2−1)+pq(r−1) = 1+p2qr−r+pqr−pq = p2qr+(r−1)(pq−1)

which is clearly false. This shows that tq = p2r is not possible.
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Thus tq = pr is the only option left. Consider a Sylow q-subgroup S of G

and let N be its normalizer in G. Thus |N | = pq. Suppose that N is abelian

and Q is its Sylow p-subgroup. Then Q has order p and it is contained in

a Sylow p-subgroup P of G. Both N and P centralize Q, so the centralizer

CG(Q) has order p2q. Note that N is the normalizer of S in CG(Q), so

CQ(G) has p distinct Sylow q-subgroups. It follows that q|p − 1. Since

q|tq − 1 = pr− 1 = (p− 1)r+(r− 1), we conclude that q|r− 1. Since p|r− 1

by (6), we get pq|r−1, so r > pq = tr, a contradiction. It follows that N can

not be abelian. Thus Q is not normal in N , which is only possible if q > p

and p|q − 1.

(8) p = 2, q = 3, r = 5.

To justify this consider the normalizer N of a Sylow p-subgroup P of G. We

have |N | = p2q. Let S be a Sylow q-subgroup of N . If S was normal in

N , then N would be the normalizer of S in G and tq = r, which is false by

(7). Thus S is not normal in N and therefore N has either p or p2 Sylow

q-subgroups. As q > p by (7), the former is not possible and N has p2 Sylow

q-subgroups. Thus q|p2 − 1 = (p − 1)(p + 1). As q > p, we conclude that

q|p + 1 and q = p + 1. This is only possible if p = 2 and q = 3. Since

r|tr − 1 = pq − 1 = 5, we conclude that r = 5.

This means that G is a simple group of order 60, hence G ∼= A5.


