
Solutions to the Midterm

Problem 1. Let K be a field and let p be a prime number not equal to the char-

acteristic of K. Suppose that K contains primitive p−th root of 1 and if p = 2 also

the primitive 4-th root of 1.

1. Suppose that for some k the splitting fields of xpk −1 and of xpk+1 −1 coincide.

Prove that K contains primitive pk+1-th root of 1.

2. Suppose that K contains primitive pk-th root of 1 for all k. Prove that if for

some a ∈ K the polynomials xp − a and xp2 − a have the same splitting fields

over K then both polynomials have all their roots in K.

Hint: If p is odd and pk+1 divides mp − 1 then pk divides m − 1.

Solution: 1. Let L be the splitting field of xpk+1 − 1 over K and let m be smallest

such that L is the splitting field of xpm − 1 over K. Thus m ≤ k. If m = 1 then

L = K, since K contains primitive p-th root of 1. Similarly if p = 2 and m = 2 then

L = K.

Suppose m > 1 or p = 2 and m > 2. Let M = K(ζpm−1) be the splitting field

of xpm−1 − 1 over K, where ζpm−1 is a primitive pm−1-th root of 1. Thus L is the

splitting field of xp − ζpm−1 over M . Since M contains primitive p−th root of 1 and

L 6= M , the extension L/M has degree p and is Galois with cyclic Galois group

generated by τ . Let ζ ∈ L be a root of xp − ζpm−1 , so ζ is a primitive pm-th root of

1 and L = M(ζ). Since L contains all pm+1-th roots of 1, there is ξ ∈ L such that

ξp = ζ. Thus ξ is a primitive pm+1-th root of 1 and therefore τ(ξ) = ξr for some r

prime to p. It follows that ξ = τ p(ξ) = ξrp

, i.e. ξrp
−1 = 1. This implies that pm+1

divides rp − 1.

If p is odd, we conclude that pm divides r− 1 and therefore ζr = ζ. Since ξp = ζ

and τ(ξ) = ξr, we see that

τ(ζ) = τ(ξp) = τ(ξ)p = ξrp = ζr = ζ,

which implies that ζ ∈ M , a contradiction.
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If p = 2, then either 2m divides r − 1 or 2m divides r + 1. In the former case we

get a contradiction in exactly same way as for p odd. In the latter case, ζ r = ζ−1 so

τ(ζ) = τ(ξ2) = τ(ξ)2 = ξ2r = ζr = ζ−1

and

ζ2m−1 = τ(ζ2m−1) = τ(ζ2) = τ(ζ)2 = ζ−2 = ζ−1
2m−1.

Thus ζ2
2m−1 = 1, which is false since m ≥ 3.

We have seen that the assumption that m > 1 or p = 2 and m > 2 leads to a

contradiction. This completes our proof that L = K.

2. Let L be the splitting field of xp −a. We need to show that L = K. Suppose not.

Let u ∈ L be a root of xp−a. Since K contains primitive p-th root of 1, L = K(u) is

a Galois extension of K of degree p with cyclic Galois group generated by τ . Since

xp2 − a splits in L, there is w ∈ L such that wp = u. We have τ(w) = ξw for some

p2-th root of 1 ξ. Since ξ ∈ K, it is fixed by τ so w = τ p(w) = ξpw, i.e. ξp = 1.

Thus

τ(u) = τ(wp) = τ(w)p = (ξw)p = wp = u

which implies that u ∈ K, a contradiction. Thus L = K.

Remark. In our solution to 2. we only used the fact that K contains a primitive

p2-th root of 1. For p odd it is enough to assume only that a primitive p-th root

of 1 is in K. Indeed, as in our solution to 2. we have τ(w) = ξw for some p2-th

root of 1 ξ ∈ L (we no longer can assume that ξ ∈ K). Now τ(ξ) = ηξ for some

p-th root of 1 (since ξp ∈ K). It follows that τ i(w) = η1+2+...+(i−1)ξiw for all i (note

that τ(η) = η). In particular, w = τ p(w) = η1+2+...+(p−1)ξpw = ξpw. Thus we have

ξp = 1 and therefore ξ ∈ K. The rest of the argument is the same as in our solution

to part 2.

Problem 2. Let L/K be a Galois extension. We say that a ∈ L generates a

normal basis of L/K if the set {τ(a) : τ ∈ Gal(L/K)} is a basis of L over K. Let

K ⊆ M ⊆ L be a subfield such that M/K is Galois. Prove that if a ∈ L generates

a normal basis of L/K then the trace TrL/M(a) generates a normal basis of M/K.

Solution: Let G, H be the Galois groups of L/K and L/M respectively. Thus H

is normal in G and the Galois group of M/K is isomorphic to G/H. Choose coset
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representatives τ1, ..., τk of H in G. Then the restrictions of τi to M constitute the

group Gal(M/K). Let b = TrL/M(a) =
∑

τ∈H τ(a). Note that

τi(b) =
∑

τ∈H

τiτ(a) =
∑

τ∈τiH

τ(a).

If the elements τ1(b), ..., τk(b) are linearly dependent over K then there are elements

a1, ..., ak in K, not all equal to 0, such that

0 =
k

∑

i=1

aiτi(b) =
k

∑

i=1

∑

τ∈τiH

aiτ(a)

But this means that the elements τ(a), τ ∈ G, are linearly dependent over K, which

contradicts the assumption that a generates a normal basis of L/K.

Problem 3. Let f ∈ Z[x] be a monic polynomial of degree n with roots x1,..., xn.

1. Prove that for every integer k > 0 there is a monic polynomial gk ∈ Z[x] of

degree n whose roots are xk
1, x

k
2, ..., x

k
n (one way is to use symmetric functions).

2. Suppose that the absolute values |xi| satisfy |xi| ≤ 1 for all i. Prove that the

sequence g1, g2,... from 1. contains only a finite number of different polynomials

(Hint: bound the coefficients of gk). Conclude that each xi is a root of unity.

Solution: We have no choice but to define gk(x) as

gk(x) =
n

∏

i=1

(x − xk
i ).

Let s1,...,sn be the elementary symmetric functions in n variables. The coefficient of

gk at xi is (−1)isi(x
k
1, ..., x

k
n). The function si(y

k
1 , ..., y

k
n) is a symmetric polynomial in

the variables y1, ..., yn and with integral coefficients. It follows that si(y
k
1 , ..., y

k
n) =

fi(s1(y1, ..., yn), ..., sn(y1, ..., yn)) for some polynomial fi with integral coefficients.

The numbers (−1)isi(x1, ..., xn) = ai are the coefficients of f . Thus ai ∈ Z and

si(x
k
1, ..., x

k
n) = fi((−1)ia1, ..., (−1)ian) are integers. This proves that gk has integral

coefficients for all k.

Suppose now that |xi| ≤ 1 for all i. Note that the polynomial si(y1, ..., yn) is a

sum of
(

n
i

)

monomials of the form yj1yj2...yji
, each occurring with coefficient 1. It

follows that

|si(z1, ..., zn)| ≤
(

n

i

)

Bi
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for any complex numbers z1, ..., zn such that |zi| ≤ B for all i. In particular,

|si(x
k
1, ..., x

k
n)| ≤

(

n
i

)

≤ 2n for all i (since |xk
i | ≤ 1). Thus all coefficients of each

polynomial gk are bounded by 2n. But these coefficients are integers. There is only

a finite number of distinct polynomials with integral coefficients bounded by 2n.

Given i, the numbers xi, x
2
i , x

3
i , ... are roots of this finite collection of polynomials,

hence they form a finite set. It follows that xk
i = xm

i for some k < m, so xm−k
i = 1,

i.e. xi is a root of 1.

Problem 4. Consider the polynomial p(x) = x4 + 5x2 + 12x + 13.

1. Prove that p is irreducible over Q.

2. Find the Galois group of the splitting field of p. Provide all details of your

solution.

3. Express the roots of p in radicals.

Solution: The only candidates for rational roots of p are ±1,±13, and direct

computation shows that none is a root. Thus if p factors over Q then the factors

must be of degree 2. By Gauss Lemma, if p is reducible then

p = (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (b + d + ac)x2 + (ad + bc)x + bd

for some integers a, b, c, d. Thus a + c = 0, b + d + ac = 5, ad + bc = 12 and bd = 13.

From bd = 13 we conclude that either {b, d} = {1, 13} or {b, d} = {−1,−13}. Thus

b + d = ±14 and d− b = ±12. Note that 12 = ad + bc = a(d− b) so a = ±1. Hence

5 = b+d+ac = ±14−a2 = ±14−1, a contradiction. It follows that p is irreducible

over Q.

Let x1, x2, x3, x4 be the roots of p. Consider z1 = x1x2 + x3x4, z2 = x1x3 + x2x4,

z3 = x1x4 + x2x3. The cubic resolvent of p is the polynomial q(x) = (x − z1)(x −
z2)(x − z3). Recall that z1 + z2 + z3 = s2, z1z2 + z1z3 + z2z3 = s1s3 − 4s4 and

z1z2z3 = s2
1s4+s2

3−4s2s4, where s1, s2, s3, s4 are the elementary symmetric functions

in x1, x2, x3, x4. In our case, s1 = 0, s2 = 5, s3 = −12, s4 = 13. Thus q(x) =

x3 − 5x2 − 52x + 116. Looking for rational roots of q we find that q(2) = 0 and

therefore q = (x − 2)(x2 − 3x − 58). Since q has exactly one rational root, the
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Galois group of p is either C4 or D8. The other two roots of q are (3±
√

241)/2. In

particular, Q(
√

241) is a quadratic subfield of the splitting field of p. We may order

the roots of p so that z1 = 2, z2 = (3 +
√

241)/2, z3 = (3 ±
√

241)/2. Note that

z1 = x1x2 + x3x4 = 2 and (x1x2)(x3x4) = s4 = 13. It follows that x1x2, x3x4 are

the roots of x2 − 2x + 13. These roots are 1 ± 2
√
−3. Consequently Q(

√
−3) is a

quadratic subfield of the splitting field of p. We see that the splitting field of p has

two different quadratic subfields, hence its Galois group cannot be cyclic. It follows

that the Galois group of p is the dihedral group D8.

Remark. In general, if the cubic resolvent has exactly one rational root, say z1 =

x1x2 + x3x4, then we look at x1x2 and x3x4. These two numbers are roots of a

quadratic polynomial over Q. If this quadratic polynomial is irreducible over Q

then it defines a quadratic extension. If this quadratic extension coincides with the

quadratic extension corresponding to the irreducible quadratic factor of q then the

Galois group is cyclic of order 4. If it is a different quadratic extension then the

Galois group is D8. It could happen however that both x1x2 and x3x4 are rational.

Then we look instead at x1 + x2 and x3 + x4. Note that both x1 + x2 + x3 + x4 = s1

and (x1 + x2)(x3 + x4) = z2 + z3 are rational so x1 + x2 and x3 + x4 are roots of a

quadratic polynomial over Q. It cannot happen that both x1x2 and x3x4 are rational

and x1 +x2 and x3 +x4 are rational, so Q(x1 +x2) is a quadratic extension of Q and

the Galois group is cyclic iff this extension coincides with the quadratic extension

corresponding to the irreducible quadratic factor of q. Note finally that if neither

x1x2 nor x1 + x2 is rational, then they define the same quadratic extension of Q.

In order to find the roots of p recall that we found that x1x2 and x3x4 are the

roots of x2 − 2x + 13. Thus {x1x2, x3x4} = {1 + 2
√
−3, 1− 2

√
−3}. Similarly, since

x1+x2+x3+x4 = 0 and (x1+x2)(x3+x4) = z2+z3 = 3, we see that x1+x2 and x3+x4

are roots of x2 +3. Hence {x1 +x2, x3 +x4} = {
√
−3,−

√
−3}. We may assume that

x1x2 = 1 + 2
√
−3 and x3x4 = 1 − 2

√
−3. But then x1 + x2 = ±

√
−3 and we must

determine if it is plus or minus. Note that −12 = s3 = x1x2(x3+x4)+x3x4(x1+x2) =

(x1 + x2)(x3x4 −x1x2) = (x1 + x + 2)(−4
√
−3). Thus x1 + x2 = −

√
−3. We showed

that x1 + x2 = −
√
−3 and x1x2 = 1 + 2

√
−3. It follows that x1, x2 are roots of the

polynomial x2 +
√
−3x + (1 + 2

√
−3). These roots are (

√
−3 ±

√

−7 − 8
√
−3)/2.
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Similarly, x3, x4 are roots of the polynomial x2 −
√
−3x + (1− 2

√
−3). These roots

are (−
√
−3 ±

√

−7 + 8
√
−3)/2.
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