Solutions to the Midterm

Problem 1. Let K be a field and let p be a prime number not equal to the char-
acteristic of K. Suppose that K contains primitive p—th root of 1 and if p = 2 also
the primitive 4-th root of 1.

1. Suppose that for some £ the splitting fields of 2?* —1 and of zP*"" — 1 coincide.

Prove that K contains primitive p**'-th root of 1.

2. Suppose that K contains primitive p*-th root of 1 for all k. Prove that if for
some a € K the polynomials 2P — a and 27 — a have the same splitting fields

over K then both polynomials have all their roots in K.
Hint: If p is odd and p**! divides m? — 1 then p* divides m — 1.

Solution: 1. Let L be the splitting field of 27" — 1 over K and let m be smallest
such that L is the splitting field of 27" — 1 over K. Thus m < k. If m = 1 then
L = K, since K contains primitive p-th root of 1. Similarly if p = 2 and m = 2 then
L=K.

Suppose m > 1 or p = 2 and m > 2. Let M = K((,m-1) be the splitting field
of 277" — 1 over K, where (,m1 is a primitive p™ '-th root of 1. Thus L is the
splitting field of 2? — (,m-1 over M. Since M contains primitive p—th root of 1 and
L # M, the extension L/M has degree p and is Galois with cyclic Galois group
generated by 7. Let ¢ € L be a root of 2 — (,m-1, so ( is a primitive p™-th root of
1 and L = M(¢). Since L contains all p™*!-th roots of 1, there is £ € L such that

™1 th root of 1 and therefore 7(£) = £” for some r

&P = (. Thus £ is a primitive p
prime to p. It follows that & = 7P(£) = ¢, i.e. "1 = 1. This implies that p™**
divides r? — 1.

If p is odd, we conclude that p™ divides r — 1 and therefore (" = (. Since &P = (

and 7(§) = &, we see that

Q) =T(€) =€) = €7 = ¢ =,

which implies that ( € M, a contradiction.



If p = 2, then either 2™ divides r — 1 or 2" divides r 4+ 1. In the former case we

get a contradiction in exactly same way as for p odd. In the latter case, (" = (~! so

T(Q)=7() =7(§)* =" = ="
and
Gom1 = 7(Gom1) = 7(C%) = 7(0)* = = G
Thus (3., = 1, which is false since m > 3.
We have seen that the assumption that m > 1 or p = 2 and m > 2 leads to a

contradiction. This completes our proof that L = K.

2. Let L be the splitting field of x? —a. We need to show that L = K. Suppose not.
Let u € L be a root of 2 —a. Since K contains primitive p-th root of 1, L = K (u) is
a Galois extension of K of degree p with cyclic Galois group generated by 7. Since
27* — a splits in L, there is w € L such that w? = u. We have 7(w) = £w for some
p?-th root of 1 £&. Since € € K, it is fixed by 7 so w = 7°(w) = Pw, i.e. & = 1.
Thus

r(w) = r(w?) = 7(w)" = (Ew)’ = v = u

which implies that u € K, a contradiction. Thus L = K.

Remark. In our solution to 2. we only used the fact that K contains a primitive
p?-th root of 1. For p odd it is enough to assume only that a primitive p-th root
of 1 is in K. Indeed, as in our solution to 2. we have 7(w) = &w for some p?-th
root of 1 £ € L (we no longer can assume that £ € K). Now 7(§) = n¢ for some
p-th root of 1 (since &P € K). It follows that 7¢(w) = n'*2++=U¢iy for all i (note
that 7(n) = ). In particular, w = 7P(w) = n' T2+ +E=1¢ry = ¢Pyw. Thus we have
&P =1 and therefore £ € K. The rest of the argument is the same as in our solution
to part 2.

Problem 2. Let L/K be a Galois extension. We say that a € L generates a
normal basis of L/K if the set {r(a) : 7 € Gal(L/K)} is a basis of L over K. Let
K C M C L be a subfield such that M/K is Galois. Prove that if a € L generates

a normal basis of L/K then the trace T,y (a) generates a normal basis of M/K.

Solution: Let G, H be the Galois groups of L/K and L/M respectively. Thus H
is normal in G and the Galois group of M/K is isomorphic to G/H. Choose coset
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representatives 7, ..., 7, of H in G. Then the restrictions of 7; to M constitute the
group Gal(M/K). Let b =Try(a) = .y 7(a). Note that
7;(b) = ZTJ(@) = Z 7(a).
TeH Ter, H
If the elements 7(b), ..., 7% (b) are linearly dependent over K then there are elements

ai,...,ar in K, not all equal to 0, such that

0= Zam(b) = Z Z a;7(a)

i=1 rern, H
But this means that the elements 7(a), 7 € G, are linearly dependent over K, which

contradicts the assumption that a generates a normal basis of L/K.

Problem 3. Let f € Z[z] be a monic polynomial of degree n with roots x,..., .

1. Prove that for every integer & > 0 there is a monic polynomial g, € Z[z| of

k .k k

degree n whose roots are 7, z3, ...,z (one way is to use symmetric functions).

2. Suppose that the absolute values |x;| satisfy |z;| < 1 for all i. Prove that the
sequence ¢i, go,... from 1. contains only a finite number of different polynomials

(Hint: bound the coefficients of g;). Conclude that each x; is a root of unity.

Solution: We have no choice but to define gi(z) as

n

gr() = [ [(= = =)
i=1

Let s1,...,5, be the elementary symmetric functions in n variables. The coefficient of
gr at ztis (—1)%s; (2%, ..., 2F). The function s;(y¥, ..., y¥) is a symmetric polynomial in
the variables yi, ..., 4, and with integral coefficients. It follows that s;(y¥, ..., y*) =
fi(s1(y1s ooy Yn)s vy Sn(Y1, -, Yn)) for some polynomial f; with integral coefficients.
The numbers (—1)%s;(z1,...,x,) = a; are the coefficients of f. Thus a; € Z and
si(z¥, ..., x%) = f;((—=1)'ay, ..., (=1)%a,) are integers. This proves that g has integral
coefficients for all £.

Suppose now that |z;] < 1 for all i. Note that the polynomial s;(yi,...,y,) is a

sum of (T;) monomials of the form y; v;,...y;,, each occurring with coefficient 1. It

follows that
’Si(Zl, vy Zn)‘ S (TZ) Bl
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for any complex numbers zq,...,z, such that |z;|] < B for all 7. In particular,
|si(@h, ..., xk)] < (7) < 27 for all @ (since |zf| < 1). Thus all coefficients of each
polynomial g, are bounded by 2". But these coefficients are integers. There is only
a finite number of distinct polynomials with integral coefficients bounded by 2".

Given 4, the numbers z;, 22, 23, ... are roots of this finite collection of polynomials,
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m—k_1
-

%

hence they form a finite set. It follows that 2% = 2" for some k < m, so x

i.e. x; is a root of 1.

Problem 4. Consider the polynomial p(z) = z* + 522 + 12z + 13.

1. Prove that p is irreducible over Q.

2. Find the Galois group of the splitting field of p. Provide all details of your

solution.

3. Express the roots of p in radicals.

Solution: The only candidates for rational roots of p are £1,413, and direct
computation shows that none is a root. Thus if p factors over Q then the factors

must be of degree 2. By Gauss Lemma, if p is reducible then
p= (2" +ar +b)(2* + cx +d) = 2* + (a + ¢)z* + (b + d + ac)z® + (ad + bc)x + bd

for some integers a,b,c,d. Thusa+c=0,b+d+ac =5, ad+ bc = 12 and bd = 13.
From bd = 13 we conclude that either {b,d} = {1,13} or {b,d} = {—1,—13}. Thus
b+d = +14 and d — b = £12. Note that 12 = ad + bc = a(d — b) so a = +1. Hence
5=b+d+ac=+14—a? = +14 — 1, a contradiction. It follows that p is irreducible
over Q.

Let x1, 29, x3, x4 be the roots of p. Consider z; = X119 + X324, 20 = X123 + ToZy,
23 = x1x4 + T2x3. The cubic resolvent of p is the polynomial ¢(z) = (x — 2z1)(x —
29)(x — z3). Recall that z; + 2o + 23 = So, 2129 + 2123 + 2023 = s153 — 4s4 and
2122723 = 3%34—1—3% — 45984, where s1, 89, S3, S4 are the elementary symmetric functions
in 1, 29,23, 24. In our case, s; = 0, s5 = 5, s3 = —12, s4 = 13. Thus ¢(z) =
x3 — 52? — 52x + 116. Looking for rational roots of ¢ we find that ¢(2) = 0 and

therefore ¢ = (v — 2)(2? — 3z — 58). Since ¢ has exactly one rational root, the



Galois group of p is either Cy or Dg. The other two roots of ¢ are (3 ++/241)/2. In
particular, @(\/E) is a quadratic subfield of the splitting field of p. We may order
the roots of p so that z; = 2, zp = (3 + v/241)/2, 23 = (3 £ 1/241)/2. Note that
21 = x1xe + w314 = 2 and (z122)(x374) = 54 = 13. It follows that xyzy, x3x4 are
the roots of #2 — 22 + 13. These roots are 1 £ 2/—3. Consequently Q(v/—3) is a
quadratic subfield of the splitting field of p. We see that the splitting field of p has
two different quadratic subfields, hence its Galois group cannot be cyclic. It follows

that the Galois group of p is the dihedral group Ds.

Remark. In general, if the cubic resolvent has exactly one rational root, say z; =
T129 + x314, then we look at xixo and x3xy. These two numbers are roots of a
quadratic polynomial over Q. If this quadratic polynomial is irreducible over Q
then it defines a quadratic extension. If this quadratic extension coincides with the
quadratic extension corresponding to the irreducible quadratic factor of ¢ then the
Galois group is cyclic of order 4. If it is a different quadratic extension then the
Galois group is Dg. It could happen however that both x,xs and x3z, are rational.
Then we look instead at x; + x5 and x3 + z4. Note that both 21 + 23 + 23+ 24 = 51
and (21 + x2)(z3 + x4) = 22 + 23 are rational so x1 + x5 and x3 + x4 are roots of a
quadratic polynomial over Q. It cannot happen that both z;x9 and x324 are rational
and x1 + x5 and x3+ 4 are rational, so Q(z1 + x2) is a quadratic extension of Q and
the Galois group is cyclic iff this extension coincides with the quadratic extension
corresponding to the irreducible quadratic factor of ¢g. Note finally that if neither

ZT1T9 NOT X1 + x5 is rational, then they define the same quadratic extension of Q.

In order to find the roots of p recall that we found that z;x9 and z3x, are the
roots of 2% — 2z + 13. Thus {z12, 1374} = {1+ 2v/=3,1 — 2¢/=3}. Similarly, since
r1+xotr3+ry = 0and (x1429)(x3+x4) = 29+23 = 3, we see that x1+x5 and z3+14
are roots of #2 +3. Hence {z1 + 12, v3+ 24} = {V/=3, —v/—3}. We may assume that
129 = 1 4+ 2¢/—=3 and z324 = 1 — 24/—3. But then 21 + zo = £v/—3 and we must
determine if it is plus or minus. Note that —12 = s3 = z129(v3+x4) + 2324 (01 +22) =
(21 + 22) (w374 — 1179) = (21 + 2 +2)(—4+/=3). Thus z; + x5 = —/—3. We showed
that 21 + 22 = —/—3 and z;25 = 1 + 24/—3. It follows that z, x5 are roots of the
polynomial 22 + v/—3z + (1 + 2v/—3). These roots are (v/—3 & /=7 — 8v/—3)/2.



Similarly, x3, x4 are roots of the polynomial z? — /—3z + (1 — 24/=3). These roots

are (—/—=3 £ 1/—T7+8y=3)/2.



