The Norm and the Trace

Let L/K be a finite extension of fields of degree d = [L : K]. Consider a finite dimensional vector space V over L of dimension n and a liner transformation $T : V \longrightarrow V$.

We may consider V as a vector space over K. If $v_1,..., v_n$ is a basis of V as a vector space over L and $a_1, ..., a_d$ is a basis of L over K then it is easy to see that $a_i v_j$, $1 \le i \le d$, $1 \le j \le n$ is a basis of V as a vector space over K. Thus the dimension of V over K is nd. The L-linear transformation T can be considered as a K-linear transformation. Let $\det_L T$, $\operatorname{tr}_L T$ be the determinant and trace of T considered as a K-liner transformation. Our goal is to understand how these numbers are related.

Fix a basis $v_1, ..., v_n$ of V and a basis $a_1, ..., a_d$ of L over K. Then $a_1v_1, a_2v_1, ..., a_dv_1, a_1v_2, ..., a_dv_n$ is a basis of V over K.

Recall that an elementary linear transformation (in the chosen basis $v_1, ..., v_n$ of the *L*-vector space V) is one of the following linear transformations:

- for $i \neq j$ and $a \in L$ define ${}_{a}T_{i,j}$ as the linear transformation which maps v_j to $av_i + v_j$ and maps v_k to v_k for all $k \neq j$ (so in the chosen basis the matrix of ${}_{a}T_{i,j}$ is the elementary matrix $E_{i,j}(a)$ with 1 on the diagonal, a in the (i, j)-entry and 0 everywhere else).
- for $0 \neq a \in L$ define ${}_{a}T_{j}$ as the linear transformation which maps v_{j} to av_{j} and maps v_{k} to v_{k} for all $k \neq j$ (so in the chosen basis the matrix of ${}_{a}T_{j}$ is the elementary matrix $S_{j}(a)$ with a in the (j, j)-entry, 1 in all other diagonal entries and 0 everywhere else).

We have $\det_L aT_{i,j} = 1$ and $\det_L aT_i = a$. In order to compute the determinants over K we find the matrices of elementary transformations in the K-basis $a_1v_1, a_2v_1, ..., a_dv_1, a_1v_2, ..., a_dv_n$ of V. If $k \neq j$ then $_aT_{i,j}(a_lv_k) = a_l aT_{i,j}(v_k) = a_lv_k$ and $_aT_j(a_lv_k) = a_l aT_j(v_k) = a_lv_k$. Now

$${}_{a}T_{i,j}(a_{l}v_{j}) = a_{l} {}_{a}T_{i,j}(v_{j}) = a_{l}(av_{i} + v_{j}) = a_{l}v_{j} + aa_{l}v_{i} = a_{l}v_{j} + \sum_{s=1}^{d} k_{s,l}a_{s}v_{i},$$

where $aa_l = \sum_{s=1}^d k_{s,l}a_s$ with $k_{s,l} \in K$. It follows that the matrix of ${}_aT_{i,j}$ in the basis $a_1v_1, a_2v_1, ..., a_dv_1, a_1v_2, ..., a_dv_n$ is upper-triangular if i < j (lower-triangular if i > j) and has 1 on the diagonal. Thus det_K ${}_aT_{i,j} = 1$. Similarly,

$$_{a}T_{j}(a_{l}v_{j}) = a_{l} \ _{a}T_{j}(v_{j}) = a_{l}(av_{j}) = (aa_{l})v_{j} = \sum_{s=1}^{d} k_{s,l}a_{s}v_{l},$$

where $aa_l = \sum_{s=1}^d k_{s,l}a_s$ with $k_{s,l} \in K$. It follows that the matrix of ${}_aT_j$ in the basis $a_1v_1, a_2v_1, ..., a_dv_1, a_1v_2, ..., a_dv_n$ is block-diagonal, with n blocks of size $d \times d$, where the j-th block is the matrix $(k_{s,l})$ and the other blocks are identity matrices. Thus $\det_{Ka}T_j = \det(k_{s,l}) = N_{L/K}(a)$. Note that we can summarize the above computations as follows:

if T is an elementary transformation then $\det_K T = N_{L/K}(\det_L T)$

(since $N_{L/K}(1) = 1$).

Recall now that every invertible linear transformation is a product of elementary transformations (which is the same as saying that every invertible matrix is a product of elementary matrices). In other words, if T is invertible then we may write $T = T_1...T_m$, where each T_i is elementary. Thus

$$\det_K T = \det_K T_1 \dots \det_K T_m = N_{L/K} (\det_L T_1) \dots N_{L/K} (\det_L T_m) = N_{L/K} (\det_L T_1 \dots \det_L T_m) = N_{L/K} (\det_L T_1) \dots N_{L/K} (\det_L T_m) = N_{L/K$$

If T is not invertible then $\det_L T = 0 = \det_K T$. Thus we proved the following

Theorem 1. For any L-linear transformation T we have $\det_K T = N_{L/K}(\det_L T)$.

In order to prove an analogous result for the trace consider the transformations ${}_{a}T_{i,j}-I$ and ${}_{a+1}T_i-I$. Let us call such transformations *basic*. Note that every liner transformation is a sum of basic linar transformations. From our discussion above we easily see that $\operatorname{tr}_{L}({}_{a}T_{i,j}-I) = 0 = \operatorname{tr}_{K}({}_{a}T_{i,j}-I)$, $\operatorname{tr}_{L}({}_{a+1}T_i-I) = a$, and $\operatorname{tr}_{K}({}_{a+1}T_i-I) = T_{L/K}(a)$. Thus $\operatorname{tr}_{K}(T) = T_{L/K}(\operatorname{tr}_{L}(T))$ for any basic T. Now if T is a sum $T_1 + \ldots + T_m$ of basic transformations then

$$tr_{K}(T_{1} + \ldots + T_{m}) = tr_{K}(T_{1}) + \ldots + tr_{K}(T_{m}) = T_{L/K}(tr_{L}(T_{1})) + \ldots + T_{L/K}(tr_{L}(T_{m})) =$$
$$= T_{L/K}(tr_{L}(T_{1}) + \ldots + tr_{L}(T_{m})) = T_{L/K}(tr_{L}(T)).$$

Thus we have proved the following

Theorem 2. For any L-linear transformation T we have $\operatorname{tr}_K T = T_{L/K}(\operatorname{tr}_L T)$.

Suppose now that $K \subseteq L \subseteq M$ are fields and M/K is finite. Let $a \in M$. We may consider the special case of Theorem 1 when V = M and T is the multiplication by a. Then we get $\det_K T = N_{M/K}(a), \det_L T = N_{M/L}(a), \operatorname{tr}_K T = T_{M/K}(a), \operatorname{tr}_L T = T_{M/L}(a)$. Thus we get

Theorem 3. Let $K \subseteq L \subseteq M$ be fields such that M/K is finite. For any $a \in M$ we have

$$N_{M/K}(a) = N_{L/K}(N_{M/L}(a))$$

and

$$T_{M/K}(a) = T_{L/K}(T_{M/L}(a)).$$