Solutions to the Midterm

Problem 1. Let L/K be a finite extension of fields, let M be the separable closure
of K in L and let ¢ : K — F be an embedding of K into an algebraically closed
field F'. Prove that ¢ can be extended to exactly [M : K] embeddings of L into F'.

Solution: Since M /K is separable, ¢ extends to exactly [M : K] embeddings of
M into F'. Let ¢ be any such extension. We know that it can be extended in at least
one way to an embedding of L into F'. So it suffices to show that there is exactly
one such extension. In fact, since L/M is purely inseparable, for every a € L there
is a natural number m such that a?” € M, where p is the characteristic of K. If n,

7o are two extensions of ¢ to L then

m m

m(a)”" =n(a”") = () = m(a") = na)?".

Since raising to p™-th power is injective on fields of characteristic p, we see that

ni(a) = nz(a). Tt follows that n; = n,.

Problem 2. Let L/K be an algebraic extension (not necessarily finite). Prove that

any homomorphism ¢ : . — L which is identity on K is an automorphism.

Solution: Since any homomorphism of fields is injective, we only need to show
that ¢ is surjective. Let a € L and let p(z) € K|[z] be the minimal polynomial of a
over K. Note that for any root u of p in L the image ¢(u) is again a root of p in L.
Thus ¢ maps the set S of roots of p in L to itself. Since S is finite and ¢ is injective,
¢ is a bijection on S. In particular a = ¢(b) for some b € S. This proves that ¢ is

surjective, hence it is an isomorphism.

Problem 3. Let p be a prime and let L be the splitting field of ? — 1 over Q. Thus
Gal(L/Q) is cyclic of order p — 1. Let £ be a primitive p-th root of unity in L. For
a subgroup H of Gal(L/Q) define ay =, ., 0(§).

1. Prove that L7 = Q(ag).

2. For p = 7, find the minimal polynomial of ay for every subgroup H of

Gal(L/Q).



Solution: Since L = Q(¢) and [L : Q] = p — 1, the elements 1,£,£2, ..., P72 form
a basis of L over Q. It follows &, &2,...,&p — 1 is also a basis of L over Q. Note now
that the sets {£,&%,...,&p — 1} and {o(€) : o € Gal(L/Q) coincide. Thus the latter
set is a basis of L over Q. Given 7 € Gal(L/Q), we have

T(an) =) (r0)(€) = ) o(é).

ceH oceTH

From the linear independence of {o(&) : 0 € Gal(L/Q) we see now that ay = 7(ap)
ifft H = 7H, which in turn is equivalent to 7 € H. Clearly this implies 1.

For 2. note that the cyclic group of order 6 has four subgroups, namely cyclic
groups of orders 1,2,3,6. If H has order 1 then ag = £ has minimal polynomial
O; =142 +22+234+ 2" +2°+25. If H has order 6 then ag = £ +62+... 466 = —1,
so its minimal polynomial is x + 1.

Recall now that Gal(L/Q) is canonically isomorphic to (Z/7Z7)*, where the class
of an integer ¢ in (Z/7Z7)* corresponds to the automorphism o; which maps £ to
¢'. The subgroup of order 3 of Gal(L/Q) is then generated by oy and the subgroup
of order 2 is generated by o_;. It follows that ag = £ + €2 + &' if |[H| = 3 and
ag =&+ EHif |H| = 2.

Suppose first that |H| = 3. By 1., ay is of degree 2 over Q. The orbit of
ay under the action of Gal(L/Q) consists of two elements, namely ay and by =
o_1(ag) =& + & + €5 Thus the minimal polynomial of ay is (z — ay)(z — by) =
2?2 — (ag + bg)x + agby. Clearly ag + by = —1 and it is easy to compute that
agby = 2. We see that 242 +2 is the minimal polynomial of az and L7 = Q(\/—_7)

Finally, if |H| = 2, then the conjugates of ay = £ + &% are by = &3 + & and
cy = &+ &5 Thus
(x—ag)(x—by)(x—cy) = 2 — (ag +bg +cy)r* + (agby +agcy +bucy)r —agbycy
is the minimal polynomial of ay. Now ag+bg+cyg = —1, agbg+agcy+bycyg = —2

and agbgcy = 1. Thus the minimal polynomial of ag is 23 + 22 — 2z — 1.

Problem 4. Let K be a field of characteristic different from 2.

1. Let a,b € K be such that none of a,b,ab is a square in K. Prove that
K(+/a, \/5) is a Galois extension of K with Galois group isomorphic to the
Klein 4-group (i.e. the product of two copies of the cyclic group of order 2).
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2. Suppose that L/K is a Galois extension with the Galois group isomorphic to
the Klein 4-group. Show that L = K(y/a, vb) for some a,b € K such that

none of a, b, ab is a square in K.

Solution: 1. Note that L = K(\/a,/b) is a splitting field of the polynomial
(22 — a)(x* — b), which is separable (if the characteristic of K is not 2). Thus L/K
is Galois. We claim that the subfields L; = K(y/a), Ly = K(sqrtb are different. In
fact, note that every automorphism of L/K is either trivial on L; or maps v/a to
—+y/a and similar claim holds for L,. Thus, if L; = Ls, then every automorphism of
L either fixes both v/a, v/b or maps each of them to its negative. It follows that every
automorphism of L fixes /av/b. Thus y/av/b € K, which implies that ab is a square
in K, a contradiction. We see then that L; # Ly. Clearly [Ly : K| = [Ly : K] = 2,
L = L1Ly and L1 N Ly = K. From a general result proved in class, we see that
GalL/K is isomorphic to the product GalL;/K x GalL — 2/K, which is the Klein
4-group. (Alternatively, observe that [L : K] = 4. Thus GalL/K has order 4 and
has at least 2 subgroups of order 2, corresponding to L; and L,. Since the Klein
4=group is the only group of order 4 with more that one subgroup of order 2, the

result follows).

2. Note that the Klein 4-group has three distinct subgroups of order 2. Thus L/K
has three distinct subfields of degree 2 over K. Consider two of this subfields L
and L,. Both fields are Galois over K. Let o; be an automorphism of L/K which
is non-trivial on L;, i = 1,2. Thus Gal(L;/K) = {id,o;}. There is a; € L; such
that o;(a;) # a;. Let z; = 0;(a;) — a; # 0. Thus o;(x;) = 02(a;) — 0i(a;) = —z;. Tt
follows that x; ¢ K. On the other hand, oy(2?) = (—z;)? = 22, so 2? € K. In other
words, L; = K(y/a), Ly = K(v/b), where a = 22 and b = 23. Clearly neither a nor
b is a square in K (since L; # K) and ab is not a square in K since L; # L. Thus

L=1ILL,= K(\/aa \/B)
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The following problem is optional. You may earn extra credit, but

concentrate first on problems 1-4.

Problem 5. Let K be a filed. Suppose that L is an algebraic extension of K such

that every polynomial in K[z] has a root in L and let F' be an algebraically closed



field containing L.

1. Show that every finite separable extension M /K contained in F' is contained
in L. Hint: Consider the normal closure of M inside F' and note that it is a
simple extension of K. Conclude that if charK' = 0 then L is algebraically

closed.

2. Show that if p = charK is a prime then for any b € F' algebraic over L we have
v € L for some k.

3. Show that if p = charK is a prime then a'/?" € L for every a € K and every
m. Conclude that if f € K[z] is separable then there is a separable polynomial

fm € L[z] such that f,,(z)?" = f(2") for every natural number m.

4. Use 2 and 3 to show that every element of F' algebraic over L is separable over

L. Conclude that L is algebraically closed.

Solution: Let us first note that the algebraic closure of K in F' (i.e. the set of all
elements of ' which are algebraic over K) is algebraically closed and contains L.
Thus we may (and will) assume that F' is an algebraic closure of K, i.e. that all
elements of F' are algebraic over K. The problem establishes then that F' = L.

If M is a finite and separable extension of K then the normal closure N of M in
F is a finite, normal and separable extension of K. Thus N = K (u) for some u. Let
f be the minimal polynomial of u over K. Since N/K is normal and f has a root
in N (namely u), we see that all roots of f are in N and N = K(w) for any root w
of f. But one such w belongs to L so N = K(w) C L. It follows that every element
of F separable over K belongs to L. If charK = 0 then all elements are separable,
hence L = F'. This proves 1.

Suppose now that p = charK is positive. Then from 1. we know that L contains
all elements of F separable over K. If b € F then we know that b”" is separable over
K for some k. Thus *" € L for some k. This establishes 2.

Let a € K. Consider the polynomial 27" — a € K|[z]. It has a root b in L. Thus
a'/?™ € L. For the last conclusion of 3. it suffices to consider an irreducible separable

polynomial f(z) = fo+ fix + ... + fir' € K[z]. Let fu(z) = fo/"" + £ 0 +



ot ftl/ PPt Tt follows from what we have just proved that f,, € L[z]. Clearly
fm(z)P" = f(2P™). We just need to see that f,, is separable. Consider the embedding
L — L which sends a to a?”. Tt defines an embedding L[z] — L[x] which takes
fm to f. This embedding takes f/ to f’ and (gcd)(f],, fm) to (ged)(f, f). Since
(ged)(f', f) = 1, we see that (ged)(f),, fm) = 1 and therefore f,, has no multiple
roots, hence is separable.

Suppose now that b € F. Then, as in the solution to 2., b*" is separable over K
for some k, hence b*" € L. Let f be the minimal polynomial of b*" over K, so f is
separable. The polynomial f,, from 3. has coefficients in L, is separable over L and
fm(D)P" = f(BP") =0, i.e fn(b) = 0. Thus b is a root of a separable polynomial over
L, i.e. b is separable over L. On the other hand, the minimal polynomial of b over
L divides 27" — b € L[z]. Since this polynomial has only one root (namely b),
any factor of this polynomial over L, which is both separable and irreducible over L
must be linear. Thus the minimal polynomial of b over L is linear, i.e. b € L. This

proves that L = F.



