
Solutions to the Midterm

Problem 1. Let L/K be a finite extension of fields, let M be the separable closure

of K in L and let φ : K −→ F be an embedding of K into an algebraically closed

field F . Prove that φ can be extended to exactly [M : K] embeddings of L into F .

Solution: Since M/K is separable, φ extends to exactly [M : K] embeddings of

M into F . Let ψ be any such extension. We know that it can be extended in at least

one way to an embedding of L into F . So it suffices to show that there is exactly

one such extension. In fact, since L/M is purely inseparable, for every a ∈ L there

is a natural number m such that apm ∈M , where p is the characteristic of K. If η1,

η2 are two extensions of ψ to L then

η1(a)
pm

= η1(a
pm

) = ψ(apm

) = η2(a
pm

) = η2(a)
pm

.

Since raising to pm-th power is injective on fields of characteristic p, we see that

η1(a) = η2(a). It follows that η1 = η2.

Problem 2. Let L/K be an algebraic extension (not necessarily finite). Prove that

any homomorphism φ : L −→ L which is identity on K is an automorphism.

Solution: Since any homomorphism of fields is injective, we only need to show

that φ is surjective. Let a ∈ L and let p(x) ∈ K[x] be the minimal polynomial of a

over K. Note that for any root u of p in L the image φ(u) is again a root of p in L.

Thus φ maps the set S of roots of p in L to itself. Since S is finite and φ is injective,

φ is a bijection on S. In particular a = ψ(b) for some b ∈ S. This proves that φ is

surjective, hence it is an isomorphism.

Problem 3. Let p be a prime and let L be the splitting field of xp−1 over Q. Thus

Gal(L/Q) is cyclic of order p− 1. Let ξ be a primitive p-th root of unity in L. For

a subgroup H of Gal(L/Q) define aH =
∑

σ∈H σ(ξ).

1. Prove that LH = Q(aH).

2. For p = 7, find the minimal polynomial of aH for every subgroup H of

Gal(L/Q).
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Solution: Since L = Q(ξ) and [L : Q] = p− 1, the elements 1, ξ, ξ2, ..., ξp−2 form

a basis of L over Q. It follows ξ, ξ2, ..., ξp− 1 is also a basis of L over Q. Note now

that the sets {ξ, ξ2, ..., ξp− 1} and {σ(ξ) : σ ∈ Gal(L/Q) coincide. Thus the latter

set is a basis of L over Q. Given τ ∈ Gal(L/Q), we have

τ(aH) =
∑

σ∈H

(τσ)(ξ) =
∑

σ∈τH

σ(ξ).

From the linear independence of {σ(ξ) : σ ∈ Gal(L/Q) we see now that aH = τ(aH)

iff H = τH, which in turn is equivalent to τ ∈ H. Clearly this implies 1.

For 2. note that the cyclic group of order 6 has four subgroups, namely cyclic

groups of orders 1, 2, 3, 6. If H has order 1 then aH = ξ has minimal polynomial

Φ7 = 1+x+x2 +x3 +x4 +x5 +x6. If H has order 6 then aH = ξ+ξ2 + ...+ξ6 = −1,

so its minimal polynomial is x+ 1.

Recall now that Gal(L/Q) is canonically isomorphic to (Z/7Z7)×, where the class

of an integer i in (Z/7Z7)× corresponds to the automorphism σi which maps ξ to

ξi. The subgroup of order 3 of Gal(L/Q) is then generated by σ2 and the subgroup

of order 2 is generated by σ−1. It follows that aH = ξ + ξ2 + ξ4 if |H| = 3 and

aH = ξ + ξ−1 if |H| = 2.

Suppose first that |H| = 3. By 1., aH is of degree 2 over Q. The orbit of

aH under the action of Gal(L/Q) consists of two elements, namely aH and bH =

σ−1(aH) = ξ3 + ξ5 + ξ6. Thus the minimal polynomial of aH is (x− aH)(x− bH) =

x2 − (aH + bH)x + aHbH . Clearly aH + bH = −1 and it is easy to compute that

aHbH = 2. We see that x2+x+2 is the minimal polynomial of aH and LH = Q(
√
−7).

Finally, if |H| = 2, then the conjugates of aH = ξ + ξ6 are bH = ξ3 + ξ4 and

cH = ξ2 + ξ5. Thus

(x−aH)(x−bh)(x−cH) = x3−(aH +bH +cH)x2+(aHbH +aHcH +bHcH)x−aHbHcH

is the minimal polynomial of aH . Now aH +bH +cH = −1, aHbH +aHcH +bHcH = −2

and aHbHcH = 1. Thus the minimal polynomial of aH is x3 + x2 − 2x− 1.

Problem 4. Let K be a field of characteristic different from 2.

1. Let a, b ∈ K be such that none of a, b, ab is a square in K. Prove that

K(
√
a,
√
b) is a Galois extension of K with Galois group isomorphic to the

Klein 4-group (i.e. the product of two copies of the cyclic group of order 2).
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2. Suppose that L/K is a Galois extension with the Galois group isomorphic to

the Klein 4-group. Show that L = K(
√
a,
√
b) for some a, b ∈ K such that

none of a, b, ab is a square in K.

Solution: 1. Note that L = K(
√
a,
√
b) is a splitting field of the polynomial

(x2 − a)(x2 − b), which is separable (if the characteristic of K is not 2). Thus L/K

is Galois. We claim that the subfields L1 = K(
√
a), L2 = K(sqrtb are different. In

fact, note that every automorphism of L/K is either trivial on L1 or maps
√
a to

−√
a and similar claim holds for L2. Thus, if L1 = L2, then every automorphism of

L either fixes both
√
a,

√
b or maps each of them to its negative. It follows that every

automorphism of L fixes
√
a
√
b. Thus

√
a
√
b ∈ K, which implies that ab is a square

in K, a contradiction. We see then that L1 6= L2. Clearly [L1 : K] = [L2 : K] = 2,

L = L1L2 and L1 ∩ L2 = K. From a general result proved in class, we see that

GalL/K is isomorphic to the product GalL1/K × GalL − 2/K, which is the Klein

4-group. (Alternatively, observe that [L : K] = 4. Thus GalL/K has order 4 and

has at least 2 subgroups of order 2, corresponding to L1 and L2. Since the Klein

4=group is the only group of order 4 with more that one subgroup of order 2, the

result follows).

2. Note that the Klein 4-group has three distinct subgroups of order 2. Thus L/K

has three distinct subfields of degree 2 over K. Consider two of this subfields L1

and L2. Both fields are Galois over K. Let σi be an automorphism of L/K which

is non-trivial on Li, i = 1, 2. Thus Gal(Li/K) = {id, σi}. There is ai ∈ Li such

that σi(ai) 6= ai. Let xi = σi(ai) − ai 6= 0. Thus σi(xi) = σ2

i (ai) − σi(ai) = −xi. It

follows that xi 6∈ K. On the other hand, σ1(x
2

i ) = (−xi)
2 = x2

i , so x2

i ∈ K. In other

words, L1 = K(
√
a), L2 = K(

√
b), where a = x2

1
and b = x2

2
. Clearly neither a nor

b is a square in K (since Li 6= K) and ab is not a square in K since L1 6= L2. Thus

L = L1L2 = K(
√
a,
√
b).

********************************************************************

The following problem is optional. You may earn extra credit, but

concentrate first on problems 1-4.

Problem 5. Let K be a filed. Suppose that L is an algebraic extension of K such

that every polynomial in K[x] has a root in L and let F be an algebraically closed
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field containing L.

1. Show that every finite separable extension M/K contained in F is contained

in L. Hint: Consider the normal closure of M inside F and note that it is a

simple extension of K. Conclude that if charK = 0 then L is algebraically

closed.

2. Show that if p = charK is a prime then for any b ∈ F algebraic over L we have

bp
k ∈ L for some k.

3. Show that if p = charK is a prime then a1/pm ∈ L for every a ∈ K and every

m. Conclude that if f ∈ K[x] is separable then there is a separable polynomial

fm ∈ L[x] such that fm(x)pm

= f(xpm

) for every natural number m.

4. Use 2 and 3 to show that every element of F algebraic over L is separable over

L. Conclude that L is algebraically closed.

Solution: Let us first note that the algebraic closure of K in F (i.e. the set of all

elements of F which are algebraic over K) is algebraically closed and contains L.

Thus we may (and will) assume that F is an algebraic closure of K, i.e. that all

elements of F are algebraic over K. The problem establishes then that F = L.

If M is a finite and separable extension of K then the normal closure N of M in

F is a finite, normal and separable extension of K. Thus N = K(u) for some u. Let

f be the minimal polynomial of u over K. Since N/K is normal and f has a root

in N (namely u), we see that all roots of f are in N and N = K(w) for any root w

of f . But one such w belongs to L so N = K(w) ⊆ L. It follows that every element

of F separable over K belongs to L. If charK = 0 then all elements are separable,

hence L = F . This proves 1.

Suppose now that p = charK is positive. Then from 1. we know that L contains

all elements of F separable over K. If b ∈ F then we know that bp
k

is separable over

K for some k. Thus bp
k ∈ L for some k. This establishes 2.

Let a ∈ K. Consider the polynomial xpm − a ∈ K[x]. It has a root b in L. Thus

a1/pm ∈ L. For the last conclusion of 3. it suffices to consider an irreducible separable

polynomial f(x) = f0 + f1x + ... + ftx
t ∈ K[x]. Let fm(x) = f

1/pm

0
+ f

1/pm

1
x +
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... + f
1/pm

t xt. It follows from what we have just proved that fm ∈ L[x]. Clearly

fm(x)pm

= f(xpm

). We just need to see that fm is separable. Consider the embedding

L −→ L which sends a to apm

. It defines an embedding L[x] −→ L[x] which takes

fm to f . This embedding takes f ′

m to f ′ and (gcd)(f ′

m, fm) to (gcd)(f ′, f). Since

(gcd)(f ′, f) = 1, we see that (gcd)(f ′

m, fm) = 1 and therefore fm has no multiple

roots, hence is separable.

Suppose now that b ∈ F . Then, as in the solution to 2., bp
m

is separable over K

for some k, hence bp
m ∈ L. Let f be the minimal polynomial of bp

m

over K, so f is

separable. The polynomial fm from 3. has coefficients in L, is separable over L and

fm(b)pm

= f(bp
m

) = 0, i.e fm(b) = 0. Thus b is a root of a separable polynomial over

L, i.e. b is separable over L. On the other hand, the minimal polynomial of b over

L divides xpm − bp
m ∈ L[x]. Since this polynomial has only one root (namely b),

any factor of this polynomial over L, which is both separable and irreducible over L

must be linear. Thus the minimal polynomial of b over L is linear, i.e. b ∈ L. This

proves that L = F .
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