Homework 3 due on Friday, March ??

Solve the following problems.

Problem 1. Let \mathbb{F}_p be a filed with p elements, p a prime. Consider the polynomial $f(x) = x^{p^n} - x + 1$ and let L be its splitting field.

a) Prove that L contains \mathbb{F}_{p^n} .

b) Prove that $[L: \mathbb{F}_{p^n}] = p$.

c) Prove that f is irreducible over \mathbb{F}_p iff either n = 1 or n = p = 2.

Problem 2. Let $K = \mathbb{F}_q$ be a finite field of order $q = p^n$ and let K(u)/K be a simple transcendental extension. In the previous homework it was proved that $\Gamma = \operatorname{Aut}(K(u)/K)$ is isomorphic to $\operatorname{PGL}_2(K)$. Since K is finite, Γ is a finite group. Let $M = K(u)^{\Gamma}$.

a) Prove that Γ has $q^3 - q$ elements.

b) Every $a \in K^{\times}$ defines an automorphism σ_a in Γ defined by $\sigma_a(u) = au$. Prove that all such automorphisms form a cyclic subgroup Γ_m of Γ of order q-1. Prove furthermore that $K(u)^{\Gamma_m} = K(u^{q-1})$.

c) Every $c \in K$ determines an automorphism τ_c in Γ defined by $\tau_c(u) = u + c$. Prove that all such automorphisms form a subgroup Γ_a of Γ of order q. Prove furthermore that $K(u)^{\Gamma_a} = K(u^q - u)$.

d) Prove that Γ is generated by Γ_m , Γ_a and the automorphism ϕ given by $\phi(u) = u^{-1}$. Prove that $K(u)^{\Gamma} = K(w)$, where $w = (u^{q^2} - u)^{q+1}/(u^q - u)^{q^2+1}$. Hint: Prove that u is a root of the polynomial $((x^q - x)^{q-1} + 1)^{q+1} - w(x^q - x)^{q^2-q}$.

Problem 3. Let K be a field and let $f \in K[x]$ be an irreducible polynomial of degree n. Let L and M be subfields of an algebraic closure of K such that L is the splitting field of f over K and M/K is Galois. Let u be a root of f in L. Prove that in M[x] the polynomial f splits into a product of $m = [K(u) \cap M : K]$ irreducible polynomials, each of degree $d = [M(u) : M] = [(L \cap M)(u) : L \cap M]$. Hint: Solve first under the assumption that f is separable.

Problem 4. Let Φ_n be the *n*-th cyclotomic polynomial, let $\mathbb{Q}(\zeta_n)$ be the *n*-th cyclotomic field (i.e. a splitting field of Φ_n), where ζ_n is a root of Φ_n .

- a) Prove that $\mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_n)$ for $m \leq n$ iff either m = n or m is odd and n = 2m.
- b) Prove that $\mathbb{Q}(\zeta_m) \subseteq \mathbb{Q}(\zeta_n)$ iff either m|n or n is odd and m|2n.
- c) Prove that the composite $\mathbb{Q}(\zeta_m)\mathbb{Q}(\zeta_n)$ is equal to $\mathbb{Q}(\zeta_N)$ where $N = \operatorname{lcm}(m, n)$.
- d) Prove that $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_d)$, where $d = \gcd(m, n)$.
- e) Prove that if n > 1 is odd then $\Phi_{2n}(x) = \Phi_n(-x)$.
- f) Prove that $\Phi_n(1) = p$ if n is a power of a prime p and $\Phi_n(1) = 1$ for all other n.
- g) Prove that if p is a prime and p|n then $\Phi_{pn}(x) = \Phi_n(x^p)$.
- h) Prove that if p is a prime and $p \nmid n$ then $\Phi_n(x^p) = \Phi_n(x)\Phi_{np}(x)$.

Problem 5. a) Let L/K be an algebraic extension. Prove that if L/K is normal and separable (but not necessarily finite) and $\Gamma = \operatorname{Aut}(L/K)$ then $L^{\Gamma} = K$.

b) Suppose that L/K and M/L are finite. Prove that $[M : K]_s = [M : L]_s[L : K]_s$. Hint: Let $\phi : K \longrightarrow F$ be an embedding into algebraically closed field F. We proved that $[L : K]_s$ is the number of extensions of ϕ to an embedding of L into F.

Problem 6. This problem outlines the Artin-Schreier theory of exponent p extensions in characteristic p. Let K be a field of characteristic p > 0. Let $f(x) = x^p - x$. Then $f: K \longrightarrow K$ is an endomorphism of K considered as an additive group. By \mathbb{F}_p we denote the prime subfield of K.

a) Let L/K be a cyclic extension of degree p and let σ be a generator of $\operatorname{Gal}(L/K)$. Prove that there is $w \in L$ such that $w + \sigma(w) + \sigma^2(w) + \ldots + \sigma^{p-1}(w) \neq 0$. Conclude that there is $u \in L$ such that $u + \sigma(u) + \sigma^2(u) + \ldots + \sigma^{p-1}(u) = -1$. Let $a = \sum_{k=0}^{p-1} (k+1)\sigma^k(u)$. Prove that $\sigma(a) = a + 1$.

b) This part is an alternate approach to a). Let $T: L \longrightarrow L$ be given by $T(x) = \sigma(x) - x$. Think of T as K-linear endomorphism of the K-vector space L. Prove that $T^p = 0$ and that the kernel of T coincides with K (so it has dimension 1). Conclude that the kernel of T is contained in the image of T. Conclude that there is $a \in L$ such that $\sigma(a) = a + 1$.

c) Let L/K be a cyclic extension of degree p and let σ be a generator of Gal(L/K). Let $a \in L$ be such that $\sigma(a) = a + 1$. Let $t = a^p - a$. Prove that $t \in K$. Prove that L = K(a) and that $x^p - x - t$ is the minimal polynomial of a over K.

d) Let $t \in K$. Prove that the polynomial $x^p - x - t \in K[x]$ is either irreducible over K or splits over K. Prove that in the former case, any splitting field L of this polynomial is a cyclic extension of K of degree p. Prove that the latter case holds if and only if $t = s^p - s$ for some $s \in K$, i.e. t belongs to the image f(K) of f.

e) Consider now any subgroup W of the (additive) group K/f(K) (we do not assume that W is finite here) and let U_W be the preimage of W in K. Let L_W be a splitting field of the set of polynomials $x^p - x - t$, where $t \in U_W$. Prove that L_W/K is normal and separable. Let $\Gamma = \operatorname{Aut}(L_W/K)$. Define a pairing $\langle , \rangle \colon \Gamma \times W \longrightarrow \mathbb{F}_p$ as follows: given $\tau \in \Gamma$ and $w \in W$ choose a preimage u of w in U_W and choose a root a of $x^p - x - u$ in L_W . Then set $\langle \tau, w \rangle = \tau(a) - a$. Prove that \langle , \rangle is well defined and that it is a non-degenerate bilinear map. Conclude that W is finite if and only if Γ is finite and then the groups Γ and W are isomorphic (non-canonically).

e) Suppose now that L/K is a normal and separable extension (not necessarily finite) such that $\Gamma = \operatorname{Aut}(L/K)$ is abelian of exponent p. Let $U = \{u \in K : x^p - x - u \text{ splits in } L\}$. Prove that U is a subgroup of K which contains f(K). Set W = U/f(K). Prove that $L = L_W$.

Remark. We have established a bijection between abelian extensions of K of exponent p and subgroups of K/f(K). This correspondence can be nicely described as follows. Fix an algebraic closure of K. All extensions of K will be assumed to be inside F. We can easily see that there is the largest extension K(p) of K which is abelian of exponent p. It corresponds to W = K/f(K), i.e. it is the splitting field of all polynomials $x^p - x - t$, where $t \in K$. Let $\Gamma(p) = \operatorname{Aut}(K(p)/K)$. We need to consider a natural topology on $\Gamma(p)$ which makes it a compact, totally disconnected group (i.e. a profinite group) (I am not going to describe this topology here). We also consider K/f(K) as a topological group with discrete topology and we identify \mathbb{F}_p with the unique cyclic subgroup of order p of

the group \mathbb{Q}/\mathbb{Z} , with discrete topology. Then the bilinear map considered above becomes a continuous map $\langle , \rangle \colon \Gamma(p) \times K/f(K) \longrightarrow \mathbb{Q}/\mathbb{Z}$ and it gives natural isomorphisms $\Gamma(p) \simeq$ $\operatorname{Hom}_{cont}(K/f(K), \mathbb{Q}/\mathbb{Z})$ and $K/f(K) \simeq \operatorname{Hom}_{cont}(\Gamma(p), \mathbb{Q}/\mathbb{Z})$. The subscript *cont* indicates that only continuous homomorphisms are considered and the Hom groups are appropriately topologized so the isomorphisms are of topological groups. Now according to the problem, every subgroup W of K/f(K) corresponds to a subfield L_W of K(p). It is not hard to see that if $\Gamma_W = \{\tau \in \Gamma(p) :< \tau, w \ge 0 \text{ for all } w \in W\}$ then $\Gamma_W = \operatorname{Aut}(K(p)/L_W)$ is a closed subgroup of $\Gamma(p)$ and $L_W = K(p)^{\Gamma_W}$. Moreover, $\operatorname{Aut}(L_W/K) \simeq \Gamma(p)/\Gamma_W$ (recall that $\Gamma(p)$ is abelian). Conversely, if Γ is a closed subgroup of $\Gamma(p)$ then $L = K(p)^{\Gamma}$ is a subfield of K(p), hence $L = L_W$ for some W. It is not hard to see that $W = \{w \in W :< \tau, w \ge 0$ for all $\tau \in \Gamma$ }.

Remark. A similar global picture can be stated for Kummer theory.

Remark. There is extension of the above ideas, due to Witt, to abelian extensions of exponent dividing p^k . However, the group K/f(K) needs to be replaced by a significantly more complicated group (related to Witt vectors). The theory is outlined in exercises in the book "Algebra" by S. Lang.