Homework 4
due on Friday, May 77

Solve the following problems.

Problem 1. Recall that we proved the following theorem.

Linear Independence of Characters. Let F be a field, let G be a group, and let f1,..., fin
be distinct homomorphisms from G to the multiplicative group F* of F. Then f1,..., fm
are linearly independent as functions from G to F'.

Consider now a field F, an abelian group A, and homomorphisms fi,..., f;, from A to the
additive group F. We say that f1,..., f., are algebraically dependent if there is a non-zero
polynomial H € F[Xy,...,X,,] such that H(fi(a),..., fm(a)) = 0 for all a € A. Suppose
that f1,..., fin are algebraically dependent and let H be a non-zero polynomial of lowest
possible degree such that H(f1(a),..., fm(a)) =0 for all a € A.

a) Consider the polynomial G(X1,..., X, Y1,...,Yy) = H(X1+Y1, ..., X+ Y ) —H (X1, ..., X)) —
H(Yy,...,Y,) as a polynomial in Xi,...X,, with coefficients in F[Y1,...,Y,,]. Prove that

deg G < deg H and that each coefficient of G' (which is a polynomial in Y7, ...,Y},) has degree
smaller than deg H. Hint. Prove this for any H € F[X3,..., X,,] by reducing to the case

when F' is a monomial.

b) Assume that G # 0. Prove that there is b € A such that G(Xy,..., X, f1(b), ..., fm (b)) #
0. Note that G(f1(a),..., fm(a), f1(b),..., fm(b)) = 0for all a € A and derive a contradiction.
This proves that G = 0. Polynomials H for which G = 0 are called additive polynomials.

c) Let H be an additive polynomial. Let h;(X) = H(0,...,X,...,0), i.e. weset X; = X
and X; = 0 for j # i. Prove that each h; is an additive polynomial in one variable and
H(Xp,...,Xm) =hi(X1)+ ...+ hpn(Xn).

d) Let h(X) be an additive polynomial in one variable. Let p be the characteristic of F.
Prove that h(X) = ¢X for some ¢ € F if p = 0 and h(X) = >.'_,¢;X?" for some ¢; € F if
p > 0.

e) Suppose now that A is a field and fi,..., fi, are distinct embeddings of A into F' which
are algebraically dependent. Prove that the characteristic p of F' is positive and there are
indices ¢, j such that f; = f]p * for some k. Conclude that if K is an infinite field and G is a
finite group of automorphisms of K then the elements of G are algebraically independent.

f) This part outlines a different proof of the last part of e). Let L = K¢ be the fixed
field of G, G = {f1,..., fm}. Prove that if T'(Xy,...,X,n) € K[X1,...,X;,] is such that
T(ai,...,am) = 0 for any ai,...,an, € L then T = 0. Chose a basis u1,...u, of K over
L. Suppose that H(fi(a),..., fm(a)) =0 for all a € K. Let ¥; = >0, fi(u;)X;. Consider
the polynomial T(X1,...,X,,) = H(Y1,...,Y,). Prove that T = 0. Prove that there are
¢i,j € K such that X; = Z;n:l ¢;;Yj. Conclude that H = 0.

Problem 2. Let L/K be a finite Galois extension, Gal(L/K) = {fi,..., fm}. A normal
basis of L/K is a basis of the form fi(a),..., fiu(a) for some a € L. We also say that a
generates a normal basis of L/K.

a) Let a; ; = fi(fj(a)). Prove that fi(a),..., fm(a) is a normal basis of L/K if and only if

the matrix (a; ;) has a non-zero determinant. Hint. We did a similar result when we proved



that the trace form is non-degenerate.

b) Note that f;f; = fs@ ;) for some s(7,j) € {1,2,...,m}. Let H(Xy,...,X;) be the deter-
minant of the matrix (z;;), where z; ; = X, jy. Prove that H # 0 and that fi(a),..., fm(a)
is a normal basis of L/K if and only if H(fi(a),..., fm(a)) # 0.

c¢) Prove that if L is infinite then L/K has a normal basis (in the next exercise you will prove
the same for L finite).

d) Prove that L/K has a normal basis if and only if L is free as a K G-module.

e) Let fi(a),..., fm(a) be a normal basis for L/K. If M is an intermediate subfield of L/K
then let ays = Trp/p(a). Prove that M = Klap]. Prove that if M/K is normal then ay
generates a normal basis for L/ K.

f) Let L1/K, Ly/K be normal subextensions of L/K such that L; N Ly = K. Suppose that
a; generates a normal basis for L;/K, i = 1,2. Prove that ajas generates a normal basis for
LiLy/K.

Problem 3. Let L/K be a finite extension of finite fields. Recall that L/K is Galois with
cyclic Galois group generated by the automorphism ¢(z) = z9, where ¢ = |K]|.

a) Prove that the norm Ny g : L* — K> and trace T7x : L — K are surjective.

b) Prove that % — 1 is the minimal polynomial of ¢ considered as an automorphism of the
K-vector space L.

c) Consider L as a K[z]-module, where xa = ¢(a) for a € L. Using the structure theory of
modules over PID prove that L is isomorphic as a K|[r]-module to K[z]/(z? — 1). Conclude
that L/K has a normal basis.

Problem 4. a) Let p be a prime and let K be a field of characteristic not equal to p which
contains primitive p-th root of 1 and, if p = 2, also a primitive 4-th root of 1. Fix a € K. In
a fixed algebraic closure of K, we choose elements u, such that uyp = a and uﬁ 11 = Un for
all n. Let Ko = K and K41 = K,[u,]. Prove that if K,, # K,,_1 then K,, C K,,+1. Hint.

Note that K, /K,_1 is cyclic of degree p. Assuming K, = K, look at the norm map from
K, to K,,_1 or analyze the action of the Galois group to get a contradiction.

b) Let p be the characteristic of a field K and let a € K. Suppose that 2P —z —a is irreducible
over K and let u be a root of 2P — x — a. Prove that the trace map T from K[u] to K is

surjective. Let w € K[u] be such that T'(w) = a. Prove that 2? — x — w is irreducible over

c) Let p be the characteristic of a field K and let a € K. Suppose that 2P — a is irreducible
over K. Prove that 2" — a is irreducible over K for all n.

d) Let L be an algebraically closed field and let K be a subfield of L such that L/K is finite.
Prove that L/K is separable (use c)). Conclude that L/K is Galois. Note that if p is a prime
and p|[L : K| then there is an intermediate subfield M of L/K such L/M is cyclic of degree
p. Use b) to prove that p is not equal to the characteristic of L. Use a) to prove that p = 2
and primitive 4-th root of 1 is not in M. Thus Gal(L/K) is a 2-group. Let i be a primitive
4-th root of 1. Note that no non-trivial element of Gal(L/K) can fix i. Conclude that G has
order 2 and L = K(1).

e) Let L be an algebraically closed field and let K be a subfield of L such that L/K is finite.



We have proved that [L : K] = 2 and L = K[i], with 2 = —1. Prove that for any non-zero
a € K either a or —a is a square in K but not both. Prove that the set of squares in K is
closed under addition. For a,b € K define a < b if b — a is a square in K. Prove that < is a
linear order on K. Conclude that K has characteristic 0. Fields K such that the algebraic
closure of K has degree 2 over K are called real closed.

Problem 5. Consider the polynomial p(z) = 2* + 522 4 122 + 13.
a) Prove that p is irreducible over Q. Compute the discriminant of p.

b) Let z1,x2,x3,x4 be the roots of p. Let z1 = x1x9 + 2324, 20 = 123 + Toxg and z3 =
x124+x273. Let g(x) = (x—21)(x—22)(x_23). Explain why ¢ should have rational coefficients
and compute these coefficients. Then find the roots of q.

c¢) Consider the Galois group G of p as a subgroup of Sy via its permutation action on the
roots of p. Prove that Q(z1, x2, x3,24)/Q(21, 22, 23) is Galois with Galois group GNV, where
V' is the unique normal subgroup of Sy of order 4. Conclude that the Galois group of p is
contained in a Sylow 2-subgroup of Sy. Prove that V' C G and conclude that G is isomorphic
to the dihedral group of order 8 (one way to do that is to show that Q(x1, z2,x3,x4) contains
two quadratic extensions of Q).

c) Express the roots of p in radicals.



