
Homework 4

due on Friday, May ??

Solve the following problems.

Problem 1. Recall that we proved the following theorem.

Linear Independence of Characters. Let F be a field, let G be a group, and let f1, . . . , fm

be distinct homomorphisms from G to the multiplicative group F× of F . Then f1, . . . , fm

are linearly independent as functions from G to F .

Consider now a field F , an abelian group A, and homomorphisms f1, . . . , fm from A to the
additive group F . We say that f1, . . . , fm are algebraically dependent if there is a non-zero
polynomial H ∈ F [X1, . . . , Xm] such that H(f1(a), . . . , fm(a)) = 0 for all a ∈ A. Suppose
that f1, . . . , fm are algebraically dependent and let H be a non-zero polynomial of lowest
possible degree such that H(f1(a), . . . , fm(a)) = 0 for all a ∈ A.

a) Consider the polynomial G(X1, . . . , Xm, Y1, . . . , Ym) = H(X1+Y1, . . . , Xm+Ym)−H(X1, . . . , Xm)−
H(Y1, . . . , Ym) as a polynomial in X1, . . . Xm with coefficients in F [Y1, . . . , Ym]. Prove that
deg G < deg H and that each coefficient of G (which is a polynomial in Y1, . . . , Ym) has degree
smaller than deg H. Hint. Prove this for any H ∈ F [X1, . . . , Xm] by reducing to the case
when F is a monomial.

b) Assume that G 6= 0. Prove that there is b ∈ A such that G(X1, . . . , Xm, f1(b), . . . , fm(b)) 6=
0. Note that G(f1(a), . . . , fm(a), f1(b), . . . , fm(b)) = 0 for all a ∈ A and derive a contradiction.
This proves that G = 0. Polynomials H for which G = 0 are called additive polynomials.

c) Let H be an additive polynomial. Let hi(X) = H(0, . . . , X, . . . , 0), i.e. we set Xi = X
and Xj = 0 for j 6= i. Prove that each hi is an additive polynomial in one variable and
H(X1, . . . , Xm) = h1(X1) + . . . + hm(Xm).

d) Let h(X) be an additive polynomial in one variable. Let p be the characteristic of F .
Prove that h(X) = cX for some c ∈ F if p = 0 and h(X) =

∑t
i=0 ciX

pi

for some ci ∈ F if
p > 0.

e) Suppose now that A is a field and f1, . . . , fm are distinct embeddings of A into F which
are algebraically dependent. Prove that the characteristic p of F is positive and there are

indices i, j such that fi = fpk

j for some k. Conclude that if K is an infinite field and G is a
finite group of automorphisms of K then the elements of G are algebraically independent.

f) This part outlines a different proof of the last part of e). Let L = KG be the fixed
field of G, G = {f1, . . . , fm}. Prove that if T (X1, . . . , Xm) ∈ K[X1, . . . , Xm] is such that
T (a1, . . . , am) = 0 for any a1, ..., am ∈ L then T = 0. Chose a basis u1, . . . um of K over
L. Suppose that H(f1(a), . . . , fm(a)) = 0 for all a ∈ K. Let Yi =

∑m
j=1 fi(uj)Xj . Consider

the polynomial T (X1, . . . , Xm) = H(Y1, . . . , Ym). Prove that T = 0. Prove that there are
ci,j ∈ K such that Xi =

∑m
j=1 ci,jYj . Conclude that H = 0.

Problem 2. Let L/K be a finite Galois extension, Gal(L/K) = {f1, . . . , fm}. A normal

basis of L/K is a basis of the form f1(a), . . . , fm(a) for some a ∈ L. We also say that a
generates a normal basis of L/K.

a) Let ai,j = fi(fj(a)). Prove that f1(a), . . . , fm(a) is a normal basis of L/K if and only if
the matrix (ai,j) has a non-zero determinant. Hint. We did a similar result when we proved
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that the trace form is non-degenerate.

b) Note that fifj = fs(i,j) for some s(i, j) ∈ {1, 2, . . . , m}. Let H(X1, . . . , Xm) be the deter-
minant of the matrix (xi,j), where xi,j = Xs(i,j). Prove that H 6= 0 and that f1(a), . . . , fm(a)
is a normal basis of L/K if and only if H(f1(a), . . . , fm(a)) 6= 0.

c) Prove that if L is infinite then L/K has a normal basis (in the next exercise you will prove
the same for L finite).

d) Prove that L/K has a normal basis if and only if L is free as a KG-module.

e) Let f1(a), . . . , fm(a) be a normal basis for L/K. If M is an intermediate subfield of L/K
then let aM = TrL/M (a). Prove that M = K[aM ]. Prove that if M/K is normal then aM

generates a normal basis for L/K.

f) Let L1/K, L2/K be normal subextensions of L/K such that L1 ∩ L2 = K. Suppose that
ai generates a normal basis for Li/K, i = 1, 2. Prove that a1a2 generates a normal basis for
L1L2/K.

Problem 3. Let L/K be a finite extension of finite fields. Recall that L/K is Galois with
cyclic Galois group generated by the automorphism φ(x) = xq, where q = |K|.

a) Prove that the norm NL/K : L× −→ K× and trace TL/K : L −→ K are surjective.

b) Prove that xd − 1 is the minimal polynomial of φ considered as an automorphism of the
K-vector space L.

c) Consider L as a K[x]-module, where xa = φ(a) for a ∈ L. Using the structure theory of
modules over PID prove that L is isomorphic as a K[x]-module to K[x]/(xd − 1). Conclude
that L/K has a normal basis.

Problem 4. a) Let p be a prime and let K be a field of characteristic not equal to p which
contains primitive p-th root of 1 and, if p = 2, also a primitive 4-th root of 1. Fix a ∈ K. In
a fixed algebraic closure of K, we choose elements un such that u0 = a and up

n+1 = un for
all n. Let K0 = K and Kn+1 = Kn[un]. Prove that if Kn 6= Kn−1 then Kn ( Kn+1. Hint.

Note that Kn/Kn−1 is cyclic of degree p. Assuming Kn = Kn+1 look at the norm map from
Kn to Kn−1 or analyze the action of the Galois group to get a contradiction.

b) Let p be the characteristic of a field K and let a ∈ K. Suppose that xp−x−a is irreducible
over K and let u be a root of xp − x − a. Prove that the trace map T from K[u] to K is
surjective. Let w ∈ K[u] be such that T (w) = a. Prove that xp − x − w is irreducible over
K[u].

c) Let p be the characteristic of a field K and let a ∈ K. Suppose that xp − a is irreducible
over K. Prove that xpn

− a is irreducible over K for all n.

d) Let L be an algebraically closed field and let K be a subfield of L such that L/K is finite.
Prove that L/K is separable (use c)). Conclude that L/K is Galois. Note that if p is a prime
and p|[L : K] then there is an intermediate subfield M of L/K such L/M is cyclic of degree
p. Use b) to prove that p is not equal to the characteristic of L. Use a) to prove that p = 2
and primitive 4-th root of 1 is not in M . Thus Gal(L/K) is a 2-group. Let i be a primitive
4-th root of 1. Note that no non-trivial element of Gal(L/K) can fix i. Conclude that G has
order 2 and L = K(i).

e) Let L be an algebraically closed field and let K be a subfield of L such that L/K is finite.
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We have proved that [L : K] = 2 and L = K[i], with i2 = −1. Prove that for any non-zero
a ∈ K either a or −a is a square in K but not both. Prove that the set of squares in K is
closed under addition. For a, b ∈ K define a < b if b − a is a square in K. Prove that < is a
linear order on K. Conclude that K has characteristic 0. Fields K such that the algebraic
closure of K has degree 2 over K are called real closed.

Problem 5. Consider the polynomial p(x) = x4 + 5x2 + 12x + 13.

a) Prove that p is irreducible over Q. Compute the discriminant of p.

b) Let x1, x2, x3, x4 be the roots of p. Let z1 = x1x2 + x3x4, z2 = x1x3 + x2x4 and z3 =
x1x4+x2x3. Let q(x) = (x−z1)(x−z2)(x−z3). Explain why q should have rational coefficients
and compute these coefficients. Then find the roots of q.

c) Consider the Galois group G of p as a subgroup of S4 via its permutation action on the
roots of p. Prove that Q(x1, x2, x3, x4)/Q(z1, z2, z3) is Galois with Galois group G∩V , where
V is the unique normal subgroup of S4 of order 4. Conclude that the Galois group of p is
contained in a Sylow 2-subgroup of S4. Prove that V ⊆ G and conclude that G is isomorphic
to the dihedral group of order 8 (one way to do that is to show that Q(x1, x2, x3, x4) contains
two quadratic extensions of Q).

c) Express the roots of p in radicals.
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