Homework 1

due on Tuesday, February 5

Read Chapter 1 in Milne's book (on-line). Solve the following problems.

Problem 1. Let K be a field and let a be algebraic over K of odd degree. Prove that $K[a] = K[a^2]$. Show by example that this can be false when the degree of a is even.

Problem 2. Let f(x) be an irreducible polynomial of degree n over a field K. Let g(x) be any polynomial in K[x]. Prove that any irreducible factor of f(g(x)) over K has degree divisible by n. Hint: Work with roots of f and f(g(x)) in some bigger field L and use the notion of degree.

Problem 3. Let K be a field of characteristic not equal to 2. Let $a, b \in K$ be elements which are not sugres in K and let $L = K(\sqrt{a}, \sqrt{b})$.

- a) Prove that [L:K]=2 iff $K[\sqrt{a}]=K[\sqrt{b}]$ iff ab is a square in K.
- b) Prove that if ab is not a square in K then [L:K]=4 and $L=K(\sqrt{a}+\sqrt{b})$.

Problem 4. Let K be a field of characteristic not equal to 2. Let a,b be elements of K such that b is not a square in K. Let $u=\sqrt{a+\sqrt{b}}$ (i.e. u is a root of $(x^2-a)^2-b$). Prove that K(u) is of the form $K(\sqrt{m},\sqrt{n})$ for some $m,n\in K$ if and only if a^2-b is a square in K. Prove furthermore that m,n can be chosen so that $u=\sqrt{m}+\sqrt{n}$. Find rational numbers m,n such that $\sqrt{3+\sqrt{5}}=\sqrt{m}+\sqrt{n}$.