Homework 3.5: Additional problems to homework 3

due on Thursday, March 28

Read Chapter 5 of Miln's book. Solve the following problems.

Problem 1. Recall that if A, C are abelian groups then the set Hom(A, C) of all group homomorphisms from A to C is also an abelian group (with (f + g)(a) = f(a) + g(a)).

a) Show that $\operatorname{Hom}(A \times B, C)$ is naturally isomorphic to $\operatorname{Hom}(A, C) \times \operatorname{Hom}(B, C)$.

b) Suppose that A is a cyclic group of order which divides n and C is a cyclic group of order n. Prove that the groups Hom(A, C) and A are isomorphic.

c) Use the structure theorem for finite abelian groups to show that if A is abelian of exponent dividing n and C is cyclic of order n then the groups Hom(A, C) and A are isomorphic.

d) Let A, B, C be abelian groups. A map $F : A \times B \longrightarrow C$ is called **bilinear** if for any $a \in A$ the map $F(a, -) : b \mapsto F(a, b)$ is a homomorphism from B to C and for any $b \in B$ the map $F(-,b) : a \mapsto F(a,b)$ is a homomorphism from A to C. Show that if F is bilinear then the assignment $a \mapsto F(a, -)$ defines a homomorphism from A to Hom(B, C) and the assignment $b \mapsto F(-,b)$ defines a homomorphism from B to Hom(A, C). We say that F is **non-degenerate** if these two homomorphisms are injective.

d) Let C be a cyclic group of order n. Suppose that A, B are finite abelian groups and $F: A \times B \longrightarrow C$ is a non-degenrate bilinear map (we often say that F is a non-degenerate pairing in this situation). Prove that the groups A and Hom(B, C) are isomorphic. Conclude that A and B are isomorphic and of exponent which divides n.

Problem 2. This problem extends some results proved in class. First let us recall what we proved in class. Let K be a field and n a positive integer not divisible by the characteristic of K. We assume that K contains the group μ_n of n-th roots of 1.

For $0 \neq a \in K$ consider the splitting field L of the polynomial $x^n - a$ over K. Since the polynomial $x^n - a$ is separable over K, L/K is a finite Galois extension. Choose a root u of $x^n - a$ in L. Any such root is an n-th root of a. The roots of $x^n - a$ in L are exactly the elements $u\xi$, with $\xi \in \mu_n$.

We proved the following.

- 1. L = K[u].
- 2. The map $\operatorname{Gal}(L/K) \longrightarrow \mu_n$ which sends each automorphisms σ to $\sigma(u)/u$ does not depend on which root u we choose and it is an injective group homomorphism.
- 3. $\operatorname{Gal}(L/K)$ is cyclic of order d for some d|n. Let σ be a generator of $\operatorname{Gal}(L/K)$. Then $\sigma(u) = \zeta u$ for some primitive d-th root of 1 ζ .
- 4. $u^d = b \in K$ and u is a root of $x^d b$. Also, $b^{n/d} = a$.
- 5. d is the smallest positive integer such that a^d is an n-th power in K.
- 6. $x^n c$ splits in L (i.e. L contains n-th roots of c) if and only if c/a^i is an n-th power in K for some i > 0.

By $(K^{\times})^n$ we mean the set of all *n*-th powers in K^{\times} . This is a subgroup of K^{\times} and the group $K^{\times}/(K^{\times})^n$ is an abelian group (usually infinite) of exponent dividing *n*. We will

often write the same symbol for an element in K^{\times} and its image in $K^{\times}/(K^{\times})^n$. We can now restate 5. and 6. above as follows:

5. d is the order of a in $K^{\times}/(K^{\times})^n$.

6. For $c \in K^{\times}$, L contains n-th root of c if and only if c belongs to the cyclic subgroup of $K^{\times}/(K^{\times})^n$ generated by a.

Suppose now that $L = K(u_1, \ldots, u_s)$ is a finite extension of K which is generated by several elements u_1, \ldots, u_s such tat $u_i^n = a_i \in K$ (we keep the assumptions about K as before).

a) Prove that $\operatorname{Gal}(L/K)$ is abelian of exponent dividing n.

b) Let $T = \{t \in L^{\times} : t^n \in K^{\times}\}$ and let $P = \{t^n : t \in T\}$. Then T is a subgroup of L^{\times} which contains K^{\times} and P is a subgroup of K^{\times} which contains $(K^{\times})^n$. Let $W = P/(K^{\times})^n$, so W is a subgroup of $K^{\times}/(K^{\times})^n$. For $\sigma \in \operatorname{Gal}(L/K)$ and $w \in W$ choose $t \in T$ such that $t^n = w$. Prove that $\sigma(t)/t \in \mu_n$ does not depend on which t you choose. We define $< \sigma, w >$ to be the quantity $\sigma(t)/t \in \mu_n$.

c) In b) we defined a function $\langle -, - \rangle$: $\operatorname{Gal}(L/K) \times W \longrightarrow \mu_n$. Prove that this function is bilinear and non-degenerate. Conculde that $\operatorname{Gal}(L/K)$ is naturally isomorphic with $\operatorname{Hom}(W,\mu_n)$. Conclude that the groups W and $\operatorname{Gal}(L/K)$ are isomorphic.

d) Conversely, suppose that W is a finite subgroup of $K^{\times}/(K^{\times})^n$. Then we can define the field L_W as follows: for every $w \in W$ choose $k_w \in K^{\times}$ representing w and set L_W to be the splitting field of $\prod_{w \in W} (x^n - k_w)$. Prove that L_W/K is Galois with Galois group isomorphic to $\operatorname{Hom}(W, \mu_n)$.

e) We will show soon that if K contains all n-th roots of 1 and L/K has cyclic group of order n as the Galois group then L = K(u), where u is a root of $x^n - a$ for some $a \in K^{\times}$. Use this and the above results to conclude that if A is a finite abelian group of exponent n then there is a bijection between finite subgroups of $K^{\times}/(K^{\times})^n$ which are isomorphic to A and finite extensions L/K with $\operatorname{Gal}(L/K)$ isomorphic to A (which assignes subgroup W to the field L_W).

Remark. We have established a bijection between finite abelian extensions of K of exponent dividing n and finite subgroups of $K^{\times}/(K^{\times})^n$. This correspondence can be nicely generalized as follows. Fix an algebraic closure F of K. All extensions of K will be assumed to be inside F. We can easily see that there is the largest extension K(n) of K which is abelian of exponent dividing n. It corresponds to $W = K^{\times}/(K^{\times})^n$, i.e. it is the splitting field of all polynomials $x^n - t$, where $t \in K^{\times}$. Let $\Gamma(n) = \operatorname{Aut}(K(n)/K)$. We need to consider a natural topology on $\Gamma(n)$ which makes it a compact, totally disconnected group (i.e. a profinite group) (I am not going to describe this topology here). We also consider $K^{\times}/(K^{\times})^n$ as a topological group with discrete topology and we identify μ_n with the unique cyclic subgroup of order n of the group \mathbb{Q}/\mathbb{Z} , with discrete topology. Then the bilinear map considered above becomes a continuous map $\langle , \rangle \colon \Gamma(n) \times K^{\times}/(K^{\times})^n \longrightarrow \mathbb{Q}/\mathbb{Z}$ and it gives natural isomorphisms $\Gamma(n) \simeq \operatorname{Hom}_{cont}(K^{\times}/(K^{\times})^n, \mathbb{Q}/\mathbb{Z})$ and $K^{\times}/(K^{\times})^n \simeq \operatorname{Hom}_{cont}(\Gamma(n), \mathbb{Q}/\mathbb{Z}).$ The subscript *cont* indicates that only continuous homomorphisms are considered and the Hom groups are appropriately topologized so the isomorphisms are of topological groups. Now extendiding the problem, every subgroup W of $K^{\times}/(K^{\times})^n$ corresponds to a subfield L_W of K(n). It is not hard to see that if $\Gamma_W = \{\tau \in \Gamma(n) : \langle \tau, w \rangle = 0 \text{ for all } w \in W\}$ then $\Gamma_W = \operatorname{Aut}(K(n)/L_W)$ is a closed subgroup of $\Gamma(n)$ and $L_W = K(n)^{\Gamma_W}$. Moreover, $\operatorname{Aut}(L_W/K) \simeq \Gamma(n)/\Gamma_W$ (recall that $\Gamma(n)$ is abelian). Conversely, if Γ is a closed subgroup

of $\Gamma(n)$ then $L = K(n)^{\Gamma}$ is a subfield of K(n), hence $L = L_W$ for some W. It is not hard to see that $W = \{w \in K^{\times}/(K^{\times})^n : \langle \tau, w \rangle = 0$ for all $\tau \in \Gamma\}$. These results are usually referred to as Kummer theory.