Homework 4

due on Wednesday, October 20

Problem 1. Compute the determinant of

$$a) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \quad b) \begin{pmatrix} 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Problem 2. Let $a, b, p_1, ..., p_n \in K$. Consider the matrix

Set $f(x) = (p_1 - x)(p_2 - x)...(p_n - x)$ and $f_i(x) = f(x)/(p_i - x)$.

- a) Show that, if $a \neq b$, then $\det A = \frac{bf(a) af(b)}{b a}$
- b) Show that, if a = b, then $\det A = a \sum_{i=1}^{n} f_i(a) + p_n f_n(a)$.
- c) Evaluate the determinant of the matrix

$$\begin{pmatrix} b & a & a & a & \dots & a & a \\ a & b & a & a & \dots & a & a \\ a & a & b & a & \dots & a & a \\ a & a & a & b & \dots & a & a \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ a & a & a & a & \dots & b & a \\ a & a & a & a & \dots & a & b \end{pmatrix}.$$

Problem 3. Show that

$$\det\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ a_1 & a_2 & a_3 & \dots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \dots & a_n^2 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \dots & a_n^{n-1} \end{pmatrix} = \Pi_{1 \le i < j \le n} (a_j - a_i).$$

Problem 4. Show that if $a \neq b$ then

$$\det\begin{pmatrix} a+b & ab & 0 & \dots & 0 & 0 \\ 1 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{pmatrix} = \frac{a^{n+1}-b^{n+1}}{a-b}.$$

(this is $n \times n$ matrix). What if a = b?

Problem 5. Show that if A is an $n \times n$ matrix with entries 1 and -1 then det A is divisible by 2^{n-1} .

Problem 6. Let $A, B, C, D \in M_n(\mathbb{R})$. Define a $2n \times 2n$ matrix G by

$$G = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

a) Suppose that G has rank n. Prove that

$$\det\begin{pmatrix} \det A & \det B \\ \det C & \det D \end{pmatrix} = 0.$$

Moreover, show that if A is invertible, then $D = CA^{-1}B$.

- b) Show that if A is invertible then $\det G = \det A \det(D CA^{-1}B)$.
- c) Show that if AC = CA then $\det G = \det(AD CB)$. Is this true without the assumption that A and C commute?

Problem 7. a) Show that if A and B are $n \times n$ matrices with integral entries and $a_{i,j} - b_{i,j}$ is even for all i, j then $\det(A) - \det(B)$ is even.

- b) Show that the determinant of the $n \times n$ matrix whose diagonal entries are 0 and off diagonal entries are all 1 equals $(-1)^{n-1}(n-1)$.
- c) Use a) and b) to show that if n is even and an $n \times n$ matrix A has even diagonal entries and odd off diagonal entries then $\det(A) \neq 0$.
- d) Prove that for n odd any matrix A as in c) has rank at least n-1.
- e) Any 2000 coins from a collection of 2001 coins can be divided into 2 groups of 1000 coins such that each group is worth the same. Prove that all coins have the same value.
- f) Any 1999 coins from a collection of 2000 coins can be divided into 2 groups such that each group is worth the same. Prove that all coins are worthless.

Hint: For e) and f) you can either use the previous parts or be clever and first solve the problems assuming that the value of each coin is an integer.